2,104 research outputs found
Anything goes with heterogeneous, but not with homogeneous oligopoly
Corchon and Mas-Colell (1996) showed that in heterogeneous (almost) everything is possible. Here it is shown that in order to obtain a similar result for homogeneous oligopoly, the reaction correspondences should fulfill a special condition.
Magnetic forming studies
Investigation of the tensile strength dependability on the characteristic time over which a pressure pulse is applied to a metal workpiece shows that the mechanical properties of these materials are functions of the rate at which the material is undergoing strain. These results and techniques are used in magnetomotive metal forming
Prostate Cancer Nodal Staging: Using Deep Learning to Predict 68Ga-PSMA-Positivity from CT Imaging Alone
Lymphatic spread determines treatment decisions in prostate cancer (PCa) patients. 68Ga-PSMA-PET/CT can be performed, although cost remains high and availability is limited. Therefore, computed tomography (CT) continues to be the most used modality for PCa staging. We assessed if convolutional neural networks (CNNs) can be trained to determine 68Ga-PSMA-PET/CT-lymph node status from CT alone. In 549 patients with 68Ga-PSMA PET/CT imaging, 2616 lymph nodes were segmented. Using PET as a reference standard, three CNNs were trained. Training sets balanced for infiltration status, lymph node location and additionally, masked images, were used for training. CNNs were evaluated using a separate test set and performance was compared to radiologists' assessments and random forest classifiers. Heatmaps maps were used to identify the performance determining image regions. The CNNs performed with an Area-Under-the-Curve of 0.95 (status balanced) and 0.86 (location balanced, masked), compared to an AUC of 0.81 of experienced radiologists. Interestingly, CNNs used anatomical surroundings to increase their performance, "learning" the infiltration probabilities of anatomical locations. In conclusion, CNNs have the potential to build a well performing CT-based biomarker for lymph node metastases in PCa, with different types of class balancing strongly affecting CNN performance
Culture of mononuclear phagocytes on a Teflon surface to prevent adherence
Contains fulltext :
4300.pdf (publisher's version ) (Open Access
Normal microbicidal function of moncytes in a girl with chronic granulomatous disease
Contains fulltext :
4326.pdf (publisher's version ) (Open Access
Culture of human bone marrow in the Teflon culture bag : Identification of the human monoblast
Contains fulltext :
4419.pdf (publisher's version ) (Open Access
An equilibrium model for RFP plasmas in the presence of resonant tearing modes
The equilibrium of a finite-beta RFP plasma in the presence of
saturated-amplitude tearing modes is investigated. The singularities of the MHD
force balance equation JXB=grad(p) at the modes rational surfaces are resolved
through a proper regularization of the zeroth-order (equilibrium) profiles, by
setting to zero there the gradient of the pressure and parallel current
density. An equilibrium model, which satisfies the regularization rule at the
various rational surfaces, is developed. The comparison with the experimental
data from the Reversed Field eXperiment (RFX) gives encouraging results. The
model provides an easy tool for magnetic analysis: many aspects of the
perturbations can be analyzed and reconstructed.Comment: Final accepted version. 36 page
Magnetic Reconnection Triggered by the Parker Instability in the Galaxy: Two-Dimensional Numerical Magnetohydrodynamic Simulations and Application to the Origin of X-Ray Gas in the Galactic Halo
We propose the Galactic flare model for the origin of the X-ray gas in the
Galactic halo. For this purpose, we examine the magnetic reconnection triggered
by Parker instability (magnetic buoyancy instability), by performing the
two-dimensional resistive numerical magnetohydrodynamic simulations. As a
result of numerical simulations, the system evolves as following phases: Parker
instability occurs in the Galactic disk. In the nonlinear phase of Parker
instability, the magnetic loop inflates from the Galactic disk into the
Galactic halo, and collides with the anti-parallel magnetic field, so that the
current sheets are created in the Galactic halo. The tearing instability
occurs, and creates the plasmoids (magnetic islands). Just after the plasmoid
ejection, further current-sheet thinning occurs in the sheet, and the anomalous
resistivity sets in. Petschek reconnection starts, and heats the gas quickly in
the Galactic halo. It also creates the slow and fast shock regions in the
Galactic halo. The magnetic field (G), for example, can heat the
gas ( cm) to temperature of K via the
reconnection in the Galactic halo. The gas is accelerated to Alfv\'en velocity
( km s). Such high velocity jets are the evidence of the
Galactic flare model we present in this paper, if the Doppler shift of the
bipolar jet is detected in the Galactic halo. Full size figures are available
at http://www.kwasan.kyoto-u.ac.jp/~tanuma/study/ApJ2002/ApJ2002.htmlComment: 13 pages, 12 figures, uses emulateapj.sty, accepted by Ap
Secular Idolatry and Sacred Traditions: A Critique of the Supreme Court\u27s Secularization Analysis
- …
