73 research outputs found

    Long-term global distribution of earth's shortwave radiation budget at the top of atmosphere

    No full text
    International audienceThe mean monthly shortwave (SW) radiation budget at the top of atmosphere (TOA) was computed on 2.5° longitude-latitude resolution for the 14-year period from 1984 to 1997, using a radiative transfer model with long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2) supplemented by data from the National Centers for Environmental Prediction ? National Center for Atmospheric Research (NCEP-NCAR) Global Reanalysis project, and other global data bases such as TIROS Operational Vertical Sounder (TOVS) and Global Aerosol Data Set (GADS). The model radiative fluxes at TOA were validated against Earth Radiation Budget Experiment (ERBE) S4 scanner satellite data (1985?1989). The model is able to predict the seasonal and geographical variation of SW TOA fluxes. On a mean annual and global basis, the model is in very good agreement with ERBE, overestimating the outgoing SW radiation at TOA (OSR) by 0.93 Wm-2 (or by 0.92%), within the ERBE uncertainties. At pixel level, the OSR differences between model and ERBE are mostly within ±10 Wm-2, with ±5 Wm-2 over extended regions, while there exist some geographic areas with differences of up to 40 Wm-2, associated with uncertainties in cloud properties and surface albedo. The 14-year average model results give a planetary albedo equal to 29.6% and a TOA OSR flux of 101.2 Wm-2. A significant linearly decreasing trend in OSR and planetary albedo was found, equal to 2.3 Wm-2 and 0.6% (in absolute values), respectively, over the 14-year period (from January 1984 to December 1997), indicating an increasing solar planetary warming. This planetary SW radiative heating occurs in the tropical and sub-tropical areas (20° S?20° N), with clouds being the most likely cause. The computed global mean OSR anomaly ranges within ±4 Wm-2, with signals from El Niño and La Niña events or Pinatubo eruption, whereas significant negative OSR anomalies, starting from year 1992, are also detected

    Analysis of the decrease in the tropical mean outgoing shortwave radiation at the top of atmosphere for the period 1984-2000

    No full text
    International audienceA decadal-scale trend in the tropical radiative energy budget has been observed recently by satellites, which however is not reproduced by climate models. In the present study, we have computed the outgoing shortwave radiation (OSR) at the top of atmosphere (TOA) at 2.5° longitude-latitude resolution and on a mean monthly basis for the 17-year period 1984-2000, by using a deterministic solar radiative transfer model and cloud climatological data from the International Satellite Cloud Climatology Project (ISCCP) D2 database. Anomaly time series for the mean monthly pixel-level OSR fluxes, as well as for the key physical parameters, were constructed. A significant decreasing trend in OSR anomalies, starting mainly from the late 1980s, was found in tropical and subtropical regions (30° S-30° N), indicating a decadal increase in solar planetary heating equal to 1.9±0.3Wm-2/decade, reproducing well the features recorded by satellite observations, in contrast to climate model results. This increase in solar planetary heating, however, is accompanied by a similar increase in planetary cooling, due to increased outgoing longwave radiation, so that there is no change in net radiation. The model computed OSR trend is in good agreement with the corresponding linear decadal decrease of 2.5±0.4Wm-2/decade in tropical mean OSR anomalies derived from ERBE S-10N non-scanner data (edition 2). An attempt was made to identify the physical processes responsible for the decreasing trend in tropical mean OSR. A detailed correlation analysis using pixel-level anomalies of model computed OSR flux and ISCCP cloud cover over the entire tropical and subtropical region (30° S-30° N), gave a correlation coefficient of 0.79, indicating that decreasing cloud cover is the main reason for the tropical OSR trend. According to the ISCCP-D2 data derived from the combined visible/infrared (VIS/IR) analysis, the tropical cloud cover has decreased by 6.6±0.2% per decade, in relative terms. A detailed analysis of the inter-annual and long-term variability of the various parameters determining the OSR at TOA, has shown that the most important contribution to the observed OSR trend comes from a decrease in low-level cloud cover over the period 1984-2000, followed by decreases in middle and high-level cloud cover. Note, however, that there still remain some uncertainties associated with the existence and magnitude of trends in ISCCP-D2 cloud amounts. Opposite but small trends are introduced by increases in cloud scattering optical depth of low and middle clouds

    Global distribution of Earth's surface shortwave radiation budget

    No full text
    International audienceThe monthly mean shortwave (SW) radiation budget at the Earth's surface (SRB) was computed on 2.5-degree longitude-latitude resolution for the 17-year period from 1984 to 2000, using a radiative transfer model accounting for the key physical parameters that determine the surface SRB, and long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2). The model input data were supplemented by data from the National Centers for Environmental Prediction - National Center for Atmospheric Research (NCEP-NCAR) and European Center for Medium Range Weather Forecasts (ECMWF) Global Reanalysis projects, and other global data bases such as TIROS Operational Vertical Sounder (TOVS) and Global Aerosol Data Set (GADS). The model surface radiative fluxes were validated against surface measurements from 22 stations of the Baseline Surface Radiation Network (BSRN) covering the years 1992-2000, and from 700 stations of the Global Energy Balance Archive (GEBA), covering the period 1984-2000. The model is in good agreement with BSRN and GEBA, with a negative bias of 14 and 6.5 Wm-2, respectively. The model is able to reproduce interesting features of the seasonal and geographical variation of the surface SW fluxes at global scale. Based on the 17-year average model results, the global mean SW downward surface radiation (DSR) is equal to 171.6 Wm-2, whereas the net downward (or absorbed) surface SW radiation is equal to 149.4 Wm-2, values that correspond to 50.2 and 43.7% of the incoming SW radiation at the top of the Earth's atmosphere. These values involve a long-term surface albedo equal to 12.9%. Significant increasing trends in DSR and net DSR fluxes were found, equal to 4.1 and 3.7 Wm-2, respectively, over the 1984-2000 period (equivalent to 2.4 and 2.2 Wm-2 per decade), indicating an increasing surface solar radiative heating. This surface SW radiative heating is primarily attributed to clouds, especially low-level, and secondarily to other parameters such as total precipitable water. The surface solar heating occurs mainly in the period starting from the early 1990s, in contrast to decreasing trend in DSR through the late 1980s. The computed global mean DSR and net DSR flux anomalies were found to range within ±8 and ±6 Wm-2, respectively, with signals from El Niño and La Niña events, and the Pinatubo eruption, whereas significant positive anomalies have occurred in the period 1992-2000

    ENSO surface longwave radiation forcing over the tropical Pacific

    No full text
    International audienceWe have studied the spatial and temporal variation of the surface longwave radiation (downwelling and net) over a 21-year period in the tropical and subtropical Pacific Ocean (40 S?40 N, 90 E?75 W). The fluxes were computed using a deterministic model for atmospheric radiation transfer, along with satellite data from the ISCCP-D2 database and reanalysis data from NCEP/NCAR (acronyms explained in main text), for the key atmospheric and surface input parameters. An excellent correlation was found between the downwelling longwave radiation (DLR) anomaly and the Niño-3.4 index time-series, over the Niño-3.4 region located in the central Pacific. A high anti-correlation was also found over the western Pacific (15?0 S, 105?130 E). There is convincing evidence that the time series of the mean downwelling longwave radiation anomaly in the western Pacific precedes that in the Niño-3.4 region by 3?4 months. Thus, the downwelling longwave radiation anomaly is a complementary index to the SST anomaly for the study of ENSO events and can be used to asses whether or not El Niño or La Niña conditions prevail. Over the Niño-3.4 region, the mean DLR anomaly values range from +20 Wm?2 during El Niño episodes to ?20 Wm?2 during La Niña events, while over the western Pacific (15?0 S, 105?130 E) these values range from ?15 Wm?2 to +10 Wm?2, respectively. The long- term average (1984?2004) distribution of the net surface longwave radiation to the surface over the tropical and subtropical Pacific for the three month period November-December-January shows a net thermal cooling of the ocean surface. When El Niño conditions prevail, the thermal radiative cooling in the central and south-eastern tropical Pacific becomes weaker by 10 Wm?2 south of the equator in the central Pacific (7?0 S, 160?120 W) for the three-month period of NDJ, because the DLR increase is larger than the increase in surface thermal emission. In contrast, the thermal radiative cooling over Indonesia is enhanced by 10 Wm?2 during the early (August?September?October) El Niño phase

    Analysis of the decrease in the tropical mean outgoing shortwave radiation at the top of atmosphere for the period 1984%ndash;2000

    No full text
    International audienceA decadal-scale trend in the tropical radiative energy budget has been observed recently by satellites, which however is not reproduced by climate models. In the present study, we have computed the outgoing shortwave radiation (OSR) at the top of atmosphere (TOA) at 2.5° longitude-latitude resolution and on a mean monthly basis for the 17-year period 1984?2000, by using a deterministic solar radiative transfer model and cloud climatological data from the International Satellite Cloud Climatology Project (ISCCP) D2 database. Atmospheric temperature and humidity vertical profiles, as well as other supplementary data, were taken from the National Centers for Environmental Prediction ? National Center for Atmospheric Research (NCEP/NCAR) and the European Center for Medium-Range Weather Forecasts (ECMWF) Global Reanalysis Projects, while other global databases, such as the Global Aerosol Data Set (GADS) for aerosol data, were also used. Anomaly time series for the mean monthly pixel-level OSR fluxes, as well as for the key physical parameters, were constructed. A significant decreasing trend in OSR anomalies, starting mainly from the late 1980s, was found in tropical and subtropical regions (30° S?30° N), indicating an increase in solar planetary heating equal to 3.2±0.5 Wm-2 over the 17-year time period from 1984 to 2000 or 1.9±0.3 Wm-2/decade, reproducing well the features recorded by satellite observations, in contrast to climate model results. The model computed trend is in good agreement with the corresponding linear decrease of 3.7±0.5 Wm-2 (or 2.5±0.4 Wm-2/decade) in tropical mean OSR anomalies derived from ERBE S-10N non-scanner data. An attempt was made to identify the physical processes responsible for the decreasing trend in tropical mean OSR. A detailed correlation analysis using pixel-level anomalies of OSR flux and ISCCP cloud cover over the entire tropical and subtropical region (30° S?30° N), gave a correlation coefficient of 0.79, indicating that decreasing cloud cover is the main reason for the tropical OSR trend. According to the ISCCP-D2 data derived from the combined visible/infrared (VIS/IR) analysis, the tropical cloud cover has decreased by 6.6±0.2% per decade, in relative terms. A detailed analysis of the inter-annual and long-term variability of the various parameters determining the OSR at TOA, has shown that the most important contribution to the observed OSR trend comes from a decrease in low-level cloud cover over the period 1984?2000, followed by decreases in middle and high-level cloud cover. Opposite but small trends are introduced by increases in cloud scattering optical depth of low and middle clouds

    Aerosol physical and optical properties in the Eastern Mediterranean Basin, Crete, from Aerosol Robotic Network data

    Get PDF
    In this study, we investigate the aerosol optical properties, namely aerosol extinction optical thickness (AOT), Angström parameter and size distribution over the Eastern Mediterranean Basin, using spectral measurements from the recently established FORTH (Foundation for Research and Technology-Hellas) AERONET station in Crete, for the two-year period 2003–2004. The location of the FORTH-AERONET station offers a unique opportunity to monitor aerosols from different sources. Maximum values of AOT are found primarily in spring, which together with small values of the Angström parameter indicate dust transported from African deserts, whereas the minimum values of AOT occur in winter. In autumn, large AOT values observed at near-infrared wavelengths arise also from dust transport. In summer, large AOT values at ultraviolet (340 nm) and visible wavelengths (500 nm), together with large values of the Angström parameter, are associated with transport of fine aerosols of urban/industrial and biomass burning origin. The Angström parameter values vary on a daily basis within the range 0.05–2.20, and on a monthly basis within the range 0.68–1.9. This behaviour, together with broad frequency distributions and back-trajectory analyses, indicates a great variety of aerosol types over the study region including dust, urban-industrial and biomass-burning pollution, and maritime, as well as mixed aerosol types. Large temporal variability is observed in AOT, Angström parameter, aerosol content and size. The fine and coarse aerosol modes persist throughout the year, with the coarse mode dominant except in summer. The highest values of AOT are related primarily to southeasterly winds, associated with coarse aerosols, and to a less extent to northwesterly winds associated with fine aerosols. The results of this study show that the FORTH AERONET station in Crete is well suited for studying the transport and mixing of different types of aerosols from a variety of sources, especially those associated with major dust events from the Sahara

    Long-term global distribution of earth's shortwave radiation budget at the top of atmosphere

    Get PDF
    The mean monthly shortwave (SW) radiation budget at the top of atmosphere (TOA) was computed on 2.5&deg; longitude-latitude resolution for the 14-year period from 1984 to 1997, using a radiative transfer model with long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2) supplemented by data from the National Centers for Environmental Prediction &ndash; National Center for Atmospheric Research (NCEP-NCAR) Global Reanalysis project, and other global data bases such as TIROS Operational Vertical Sounder (TOVS) and Global Aerosol Data Set (GADS). The model radiative fluxes at TOA were validated against Earth Radiation Budget Experiment (ERBE) S4 scanner satellite data (1985&ndash;1989). The model is able to predict the seasonal and geographical variation of SW TOA fluxes. On a mean annual and global basis, the model is in very good agreement with ERBE, overestimating the outgoing SW radiation at TOA (OSR) by 0.93 Wm<sup>-2</sup> (or by 0.92%), within the ERBE uncertainties. At pixel level, the OSR differences between model and ERBE are mostly within &plusmn;10 Wm<sup>-2</sup>, with &plusmn;5 Wm<sup>-2</sup> over extended regions, while there exist some geographic areas with differences of up to 40 Wm<sup>-2</sup>, associated with uncertainties in cloud properties and surface albedo. The 14-year average model results give a planetary albedo equal to 29.6% and a TOA OSR flux of 101.2 Wm<sup>-2</sup>. A significant linearly decreasing trend in OSR and planetary albedo was found, equal to 2.3 Wm<sup>-2</sup> and 0.6% (in absolute values), respectively, over the 14-year period (from January 1984 to December 1997), indicating an increasing solar planetary warming. This planetary SW radiative heating occurs in the tropical and sub-tropical areas (20&deg; S&ndash;20&deg; N), with clouds being the most likely cause. The computed global mean OSR anomaly ranges within &plusmn;4 Wm<sup>-2</sup>, with signals from El Ni&#241;o and La Ni&#241;a events or Pinatubo eruption, whereas significant negative OSR anomalies, starting from year 1992, are also detected

    Modelling the direct effect of aerosols in the solar near-infrared on a planetary scale

    No full text
    International audienceWe used a spectral radiative transfer model to compute the direct radiative effect (DRE) of natural plus anthropogenic aerosols in the solar near-infrared (IR), between 0.85?10 µm, namely, their effect on the outgoing near-IR radiation at the top of atmosphere (TOA, ?FTOA), on the atmospheric absorption of near-IR radiation (?Fatmab) and on the surface downward and absorbed near-IR radiation (?Fsurf, and ?Fsurfnet, respectively). The computations were performed on a global scale (over land and ocean) under all-sky conditions, using spectral aerosol optical properties taken from the Global Aerosol Data Set (GADS) supplemented by realistic data for the rest of surface and atmospheric parameters. The computed aerosol DRE, averaged over the 12-year period 1984?1995 for January and July, shows that aerosols produce a planetary cooling by increasing the scattered near-IR radiation back to space (by up to 6 Wm?2), they warm the atmosphere (by up to 7 Wm?2) and cool the surface (by up to 12 Wm?2). However, they can also slightly warm the Earth-atmosphere system or cool the atmosphere (by less than 1 Wm?2) over limited areas. The magnitude of the near-IR aerosol DRE is smaller than that of the combined ultraviolet (UV) and visible DRE, but it is still energetically important, since it contributes to the total shortwave (SW) DRE by 22?31%. On a global mean basis, the DREs ?FTOA, ?Fatmab, ?Fsurf, and ?Fsurfnet are equal to about 0.48, 0.37, ?1.03 and ?0.85 Wm?2, i.e. their magnitude is similar to that of climate forcing associated with increasing concentrations of greenhouse gases. The aerosol induced near-IR surface cooling combined with the atmospheric warming, affects the thermal dynamics of the Earth-atmosphere system, by increasing the atmospheric stability, decreasing thus cloud formation, and precipitation, especially over desertification threatened regions such as the Mediterranean basin. This, together with the fact that the sign of near-IR aerosol DRE is sometimes opposite to that of UV-visible DRE, demonstrates the importance of performing detailed spectral computations to provide estimates of the climatic role of aerosols for the Earth-atmosphere system

    Effects of Low-Level Laser Irradiation on Mammalian Cell Cultures: Comparative Experimental Studies with Different Types of Lasers at 1260-1270 nm

    Get PDF
    Abstract: The effects observed under near-infrared laser irradiation of mammalian cells have been demonstrated to depend to a large extent on the type of irradiation source. In our experiments, we have measured concentration of reactive oxygen species in cell cultures of different origin (rodent and human, cancerous and non-cancerous) exposed to the radiation of low-level lasers at 1265 nm. Surprisingly, the radiation effects of narrowband laser occur to be more pronounced compared with those provided by the lasers of broader linewidth. Also, we have found that the aggressive types of cancer require a more accurate selection of irradiation parameters and laser operation regime

    High-frequency vector harmonic mode locking driven by acoustic resonances

    Get PDF
    A controllable passive harmonic mode locking (HML) in an erbium-doped fiber laser with a soliton pulse shaping using a single-wall carbon nanotube has been experimentally demonstrated. By increasing the pump power and adjusting the in-cavity polarization controller, we reached the 51st-order harmonic (902 MHz) having the output power of 37 mW. We attribute the observed high-frequency HML to the electrostriction effect caused by periodic pulses and leading to excitation of the radial and torsional-radial acoustic modes in the transverse section of the laser. The exited acoustic modes play the role of the bandpass filter, which stabilizes the high-frequency HML regime
    • …
    corecore