1,412 research outputs found

    3D simulations of gyrosynchrotron emission from mildly anisotropic nonuniform electron distributions in symmetric magnetic loops

    Full text link
    Microwave emission of solar flares is formed primarily by incoherent gyrosynchrotron radiation generated by accelerated electrons in coronal magnetic loops. The resulting emission depends on many factors, including pitch-angle distribution of the emitting electrons and the source geometry. In this work, we perform systematic simulations of solar microwave emission using recently developed tools (GS Simulator and fast gyrosynchrotron codes) capable of simulating maps of radio brightness and polarization as well as spatially resolved emission spectra. A 3D model of a symmetric dipole magnetic loop is used. We compare the emission from isotropic and anisotropic (of loss-cone type) electron distributions. We also investigate effects caused by inhomogeneous distribution of the emitting particles along the loop. It is found that effect of the adopted moderate electron anisotropy is the most pronounced near the footpoints and it also depends strongly on the loop orientation. Concentration of the emitting particles at the loop top results in a corresponding spatial shift of the radio brightness peak, thus reducing effects of the anisotropy. The high-frequency (around 50 GHz) emission spectral index is specified mainly by the energy spectrum of the emitting electrons; however, at intermediate frequencies (around 10-20 GHz), the spectrum shape is strongly dependent on the electron anisotropy, spatial distribution, and magnetic field nonuniformity. The implications of the obtained results for the diagnostics of the energetic electrons in solar flares are discussed.Comment: ApJ in press. 20 pp, 13 figs, on-line album and simulation source code availabl

    Diffusive synchrotron radiation from extragalactic jets

    Full text link
    Flattenings of nonthermal radiation spectra observed from knots and interknot locations of the jets of 3C273 and M87 in UV and X-ray bands are discussed within modern models of magnetic field generation in the relativistic jets. Specifically, we explicitly take into account the effect of the small-scale random magnetic field, probably present in such jets, which gives rise to emission of Diffusive Synchrotron Radiation, whose spectrum deviates substantially from the standard synchrotron spectrum, especially at high frequencies. The calculated spectra agree well with the observed ones if the energy densities contained in small-scale and large-scale magnetic fields are comparable. The implications of this finding for magnetic field generation, particle acceleration, and jet composition are discussed.Comment: 5 pages with 2 figures, MNRAS Letters, accepte

    Radio emission from acceleration sites of solar flares

    Full text link
    The Letter takes up a question of what radio emission is produced by electrons at the very acceleration site of a solar flare. Specifically, we calculate incoherent radio emission produced within two competing acceleration models--stochastic acceleration by cascading MHD turbulence and regular acceleration in collapsing magnetic traps. Our analysis clearly demonstrates that the radio emission from the acceleration sites: (i) has sufficiently strong intensity to be observed by currently available radio instruments and (ii) has spectra and light curves which are distinctly different in these two competing models, which makes them observationally distinguishable. In particular, we suggest that some of the narrowband microwave and decimeter continuum bursts may be a signature of the stochastic acceleration in solar flares.Comment: ApJL, in pres

    GRB spectral parameter modeling

    Full text link
    Fireball model of the gamma-ray bursts (GRBs) predicts generation of numerous internal shocks, which efficiently accelerate charged particles and generate relatively small-scale stochastic magnetic and electric fields. The accelerated particles diffuse in space due to interaction with the random waves and so emit so called Diffusive Synchrotron Radiation (DSR) in contrast to standard synchrotron radiation they would produce in a large-scale regular magnetic fields. In this contribution we present key results of detailed modeling of the GRB spectral parameters, which demonstrate that the non-perturbative DSR emission mechanism in a strong random magnetic field is consistent with observed distributions of the Band parameters and also with cross-correlations between them.Comment: 3 pages; IAU symposium # 274 "Advances in Plasma Astrophysics

    Diffusive radiation in Langmuir turbulence produced by jet shocks

    Full text link
    Anisotropic distributions of charged particles including two-stream distributions give rise to generation of either stochastic electric fields (in the form of Langmuir waves, Buneman instability) or random quasi-static magnetic fields (Weibel and filamentation instabilities) or both. These two-stream instabilities are known to play a key role in collisionless shock formation, shock-shock interactions, and shock-induced electromagnetic emission. This paper applies the general non-perturbative stochastic theory of radiation to study electromagnetic emission produced by relativistic particles, which random walk in the stochastic electric fields of the Langmuir waves. This analysis takes into account the cumulative effect of uncorrelated Langmuir waves on the radiating particle trajectory giving rise to angular diffusion of the particle, which eventually modifies the corresponding radiation spectra. We demonstrate that the radiative process considered is probably relevant for emission produced in various kinds of astrophysical jets, in particular, prompt gamma-ray burst spectra, including X-ray excesses and prompt optical flashes.Comment: 9 pages, 5 figures, MNRAS, accepte

    Modeling of gyrosynchrotron radio emission pulsations produced by MHD loop oscillations in solar flares

    Full text link
    A quantitative study of the observable radio signatures of the sausage, kink, and torsional MHD oscillation modes in flaring coronal loops is performed. Considering first non-zero order effect of these various MHD oscillation modes on the radio source parameters such as magnetic field, line of sight, plasma density and temperature, electron distribution function, and the source dimensions, we compute time dependent radio emission (spectra and light curves). The radio light curves (of both flux density and degree of polarization) at all considered radio frequencies are than quantified in both time domain (via computation of the full modulation amplitude as a function of frequency) and in Fourier domain (oscillation spectra, phases, and partial modulation amplitude) to form the signatures specific to a particular oscillation mode and/or source parameter regime. We found that the parameter regime and the involved MHD mode can indeed be distinguished using the quantitative measures derived in the modeling. We apply the developed approach to analyze radio burst recorded by Owens Valley Solar Array and report possible detection of the sausage mode oscillation in one (partly occulted) flare and kink or torsional oscillations in another flare.Comment: ApJ, accepte

    Thermal to Nonthermal Energy Partition at the Early Rise Phase of Solar Flares

    Full text link
    In some flares the thermal component appears much earlier than the nonthermal component in X-ray range. Using sensitive microwave observations we revisit this finding made by Battaglia et al. (2009) based on RHESSI data analysis. We have found that nonthermal microwave emission produced by accelerated electrons with energy of at least several hundred keV, appears as early as the thermal soft X-ray emission indicative that the electron acceleration takes place at the very early flare phase. The non-detection of the hard X-rays at that early stage of the flares is, thus, an artifact of a limited RHESSI sensitivity. In all considered events, the microwave emission intensity increases at the early flare phase. We found that either thermal or nonthermal gyrosynchrotron emission can dominate the low-frequency part of the microwave spectrum below the spectral peak occurring at 3-10 GHz. In contrast, the high-frequency optically thin part of the spectrum is always formed by the nonthermal, accelerated electron component, whose power-law energy spectrum can extend up to a few MeV at this early flare stage. This means that even though the total number of accelerated electrons is small at this stage, their nonthermal spectrum is fully developed. This implies that an acceleration process of available seed particles is fully operational. While, creation of this seed population (the process commonly called `injection' of the particles from the thermal pool into acceleration) has a rather low efficiency at this stage, although, the plasma heating efficiency is high. This imbalance between the heating and acceleration (in favor of the heating) is difficult to reconcile within most of available flare energization models. Being reminiscent of the tradeoff between the Joule heating and runaway electron acceleration, it puts additional constraints on the electron injection into the acceleration process.Comment: 11 pages, 12 figures, accepted for Ap
    • …
    corecore