5,492 research outputs found
Compendium of Applications Technology Satellite user experiments
The achievements of the user experiments performed with ATS satellites from 1967 to 1973 are summarized. Included are fixed and mobile point to point communications experiments involving voice, teletype and facsimile transmissions. Particular emphasis is given to the Alaska and Hawaii satellite communications experiments. The use of the ATS satellites for ranging and position fixing of ships and aircraft is also covered. The structure and operating characteristics of the various ATS satellite are briefly described
Microchemistry-dependent simulation of yield stress and flow stress in non-heat treatable Al sheet alloys
Applications Technology Satellite and Communications Technology Satellite user experiments for 1967-1980 reference book. Volume 4: Abstracts
The important user experiments conducted during the fourteen year period from 1966 to 1980 are summarized. A description of each of the satellites and a brief summary of each user experiment is presented. A cross index of user experiments sorted by various parameters and a listing of keywords versus experiment number is included. The experiments are grouped by type of service offered; for example, education, health services, and data transmission. A bibliography of reports by accession number and by author is also presented. User viewpoints of the systems are presented
Applications Technology Satellite and Communications Technology Satellite user experiments for 1967 - 1980 reference book, volume 1
A description of each of the satellites is given and a brief summary of each user experiment is presented. A Cross Index of User Experiments sorted by various parameters and a listing of keywords versus Experiment Number are presented
Aperture Valve for the Mars Organic Molecule Analyzer (MOMA)
NASA's participation in the multi-nation ExoMars 2018 Rover mission includes a critical astrobiology Mass Spectrometer Instrument on the Rover called the Mars Organic Molecule Analyzer (MOMA). The Aperture Valve is a critical electromechanical valve used by the Mass Spectrometer to facilitate the transfer of ions from Martian soil to the Mass Spectrometer for analysis. The MOMA Aperture Valve development program will be discussed in terms of the Initial valve design and subsequent improvements that resulted from prototype testing. The Initial Aperture Valve concept seemed promising, based on calculations and perceived merits. However, performance results of this design were disappointing, due to delamination of TiN and DLC coatings applied to the Titanium base metals, causing debris from the coatings to seize the valve. While peer reviews and design trade studies are important forums to vet a concept design, results from testing should not be underestimated. Despite the lack of development progress to meet requirements, valuable information from weakness discovered in the Initial Valve design was used to develop a second, more robust Aperture valve. Based on a check-ball design, the ETU /flight valve design resulted in significantly less surface area to create the seal. Moreover, PVD coatings were eliminated in favor of hardened, nonmagnetic corrosion resistant alloys. Test results were impressive, with the valve achieving five orders of magnitude better sealing leak rate over end of life requirements. Cycle life was equally impressive, achieving 280,000 cycles without failure
Diffractive triangulation of radiative point sources
We describe a general method to determine the location of a point source of waves relative to a twodimensional
single-crystalline active pixel detector. Based on the inherent structural sensitivity of
crystalline sensor materials, characteristic detector diffraction patterns can be used to triangulate the
location of a wave emitter. The principle described here can be applied to various types of waves,
provided that the detector elements are suitably structured. As a prototypical practical application of
the general detection principle, a digital hybrid pixel detector is used to localize a source of electrons
for Kikuchi diffraction pattern measurements in the scanning electron microscope. This approach
provides a promising alternative method to calibrate Kikuchi patterns for accurate measurements of
microstructural crystal orientations, strains, and phase distributions
Strong anisotropy in surface kinetic roughening: analysis and experiments
We report an experimental assessment of surface kinetic roughening properties
that are anisotropic in space. Working for two specific instances of silicon
surfaces irradiated by ion-beam sputtering under diverse conditions (with and
without concurrent metallic impurity codeposition), we verify the predictions
and consistency of a recently proposed scaling Ansatz for surface observables
like the two-dimensional (2D) height Power Spectral Density (PSD). In contrast
with other formulations, this Ansatz is naturally tailored to the study of
two-dimensional surfaces, and allows to readily explore the implications of
anisotropic scaling for other observables, such as real-space correlation
functions and PSD functions for 1D profiles of the surface. Our results confirm
that there are indeed actual experimental systems whose kinetic roughening is
strongly anisotropic, as consistently described by this scaling analysis. In
the light of our work, some types of experimental measurements are seen to be
more affected by issues like finite space resolution effects, etc. that may
hinder a clear-cut assessment of strongly anisotropic scaling in the present
and other practical contexts
Testing the proposed link between cosmic rays and cloud cover
A decrease in the globally averaged low level cloud cover, deduced from the
ISCCP infra red data, as the cosmic ray intensity decreased during the solar
cycle 22 was observed by two groups. The groups went on to hypothesise that the
decrease in ionization due to cosmic rays causes the decrease in cloud cover,
thereby explaining a large part of the presently observed global warming. We
have examined this hypothesis to look for evidence to corroborate it. None has
been found and so our conclusions are to doubt it. From the absence of
corroborative evidence, we estimate that less than 23%, at the 95% confidence
level, of the 11-year cycle change in the globally averaged cloud cover
observed in solar cycle 22 is due to the change in the rate of ionization from
the solar modulation of cosmic rays
All Optical Formation of an Atomic Bose-Einstein Condensate
We have created a Bose-Einstein condensate of 87Rb atoms directly in an
optical trap. We employ a quasi-electrostatic dipole force trap formed by two
crossed CO_2 laser beams. Loading directly from a sub-doppler laser-cooled
cloud of atoms results in initial phase space densities of ~1/200.
Evaporatively cooling through the BEC transition is achieved by lowering the
power in the trapping beams over ~ 2 s. The resulting condensates are F=1
spinors with 3.5 x 10^4 atoms distributed between the m_F = (-1,0,1) states.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
Recovery and recrystallization in commercial purity aluminum cold rolled to an ultrahigh strain
- …
