7,764 research outputs found
Stability of five-dimensional rotating black holes projected on the brane
We study the stability of five-dimensional Myers-Perry black holes with a
single angular momentum under linear perturbations, and we compute the
quasinormal modes (QNM's) of the black hole metric projected on the brane,
using Leaver's continued fraction method. In our numerical search we do not
find unstable modes. The damping time of modes having l=m=2 and l=m=1 tends to
infinity as the black hole spin tends to the extremal value, showing a
behaviour reminiscent of the one observed for ordinary 4-dimensional Kerr black
holes.Comment: 8 pages, 2 figures. Updated to match the version published on PRD.
Corrected a small typo (which does not affect the results) in equation (6) of
the published pape
Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow
Fermat, Leibniz, Euler, and Cauchy all used one or another form of
approximate equality, or the idea of discarding "negligible" terms, so as to
obtain a correct analytic answer. Their inferential moves find suitable proxies
in the context of modern theories of infinitesimals, and specifically the
concept of shadow. We give an application to decreasing rearrangements of real
functions.Comment: 35 pages, 2 figures, to appear in Notices of the American
Mathematical Society 61 (2014), no.
Final spins from the merger of precessing binary black holes
The inspiral of binary black holes is governed by gravitational radiation
reaction at binary separations r < 1000 M, yet it is too computationally
expensive to begin numerical-relativity simulations with initial separations r
> 10 M. Fortunately, binary evolution between these separations is well
described by post-Newtonian equations of motion. We examine how this
post-Newtonian evolution affects the distribution of spin orientations at
separations r ~ 10 M where numerical-relativity simulations typically begin.
Although isotropic spin distributions at r ~ 1000 M remain isotropic at r ~ 10
M, distributions that are initially partially aligned with the orbital angular
momentum can be significantly distorted during the post-Newtonian inspiral.
Spin precession tends to align (anti-align) the binary black hole spins with
each other if the spin of the more massive black hole is initially partially
aligned (anti-aligned) with the orbital angular momentum, thus increasing
(decreasing) the average final spin. Spin precession is stronger for
comparable-mass binaries, and could produce significant spin alignment before
merger for both supermassive and stellar-mass black hole binaries. We also
point out that precession induces an intrinsic accuracy limitation (< 0.03 in
the dimensionless spin magnitude, < 20 degrees in the direction) in predicting
the final spin resulting from the merger of widely separated binaries.Comment: 20 pages, 16 figures, new PN terms, submitted to PR
Weak Equivalence Principle Test on a Sounding Rocket
SR-POEM, our principle of equivalence measurement on a sounding rocket, will
compare the free fall rate of two substances yielding an uncertainty of E-16 in
the estimate of \eta. During the past two years, the design concept has matured
and we have been working on the required technology, including a laser gauge
that is self aligning and able to reach 0.1 pm per root hertz for periods up to
40 s. We describe the status and plans for this project.Comment: Presented at the Fifth Meeting on CPT and Lorentz Symmetry,
Bloomington, Indiana, June 28-July 2, 201
On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA
Newly formed black holes are expected to emit characteristic radiation in the
form of quasi-normal modes, called ringdown waves, with discrete frequencies.
LISA should be able to detect the ringdown waves emitted by oscillating
supermassive black holes throughout the observable Universe. We develop a
multi-mode formalism, applicable to any interferometric detectors, for
detecting ringdown signals, for estimating black hole parameters from those
signals, and for testing the no-hair theorem of general relativity. Focusing on
LISA, we use current models of its sensitivity to compute the expected
signal-to-noise ratio for ringdown events, the relative parameter estimation
accuracy, and the resolvability of different modes. We also discuss the extent
to which uncertainties on physical parameters, such as the black hole spin and
the energy emitted in each mode, will affect our ability to do black hole
spectroscopy.Comment: 44 pages, 21 figures, 10 tables. Minor changes to match version in
press in Phys. Rev.
Arc-Flags in Dynamic Graphs
Computation of quickest paths has undergoing a rapid development in recent
years. It turns out that many high-performance route planning algorithms are
made up of several basic ingredients. However, not all of those ingredients have
been analyzed in a emph{dynamic} scenario where edge weights change after
preprocessing. In this work, we present how one of those ingredients, i.e.,
Arc-Flags can be applied in dynamic scenario
Aligned spin neutron star-black hole mergers: a gravitational waveform amplitude model
The gravitational radiation emitted during the merger of a black hole with a
neutron star is rather similar to the radiation from the merger of two black
holes when the neutron star is not tidally disrupted. When tidal disruption
occurs, gravitational waveforms can be broadly classified in two groups,
depending on the spatial extent of the disrupted material. Extending previous
work by some of us, here we present a phenomenological model for the
gravitational waveform amplitude in the frequency domain encompassing the three
possible outcomes of the merger: no tidal disruption, "mild" and "strong" tidal
disruption. The model is calibrated to 134 general-relativistic numerical
simulations of binaries where the black hole spin is either aligned or
antialigned with the orbital angular momentum. All simulations were produced
using the SACRA code and piecewise polytropic neutron star equations of state.
The present model can be used to determine when black-hole binary waveforms are
sufficient for gravitational-wave detection, to extract information on the
equation of state from future gravitational-wave observations, to obtain more
accurate estimates of black hole-neutron star merger event rates, and to
determine the conditions under which these systems are plausible candidates as
central engines of gamma-ray bursts, macronovae and kilonovae.Comment: 15 pages, 7 figures, 1 tabl
- …
