71 research outputs found

    Évolution atypique sous ETELCALCETIDE

    No full text

    Regulation of extracellular fluid volume and blood pressure by pendrin.

    No full text
    Na(+) is commonly designed as the culprit of salt-sensitive hypertension but several studies suggest that abnormal Cl(-) transport is in fact the triggering mechanism. This review focuses on the regulation of blood pressure (BP) by pendrin, an apical Cl(-)/HCO(3)(-) exchanger which mediates HCO(3)(-) secretion and transcellular Cl(-) transport in type B intercalated cells (B-ICs) of the distal nephron. Studies in mice showed that it is required not only for acid-base regulation but also for BP regulation as pendrin knock-out mice develop hypotension when submitted to NaCl restriction and are resistant to aldosterone-induced hypertension. Pendrin contributes to these processes by two mechanisms. First, pendrin-mediated Cl(-) transport is coupled with Na(+) reabsorption by the Na(+)-dependent Cl(-)/HCO(3)(-) exchanger NDCBE to mediate NaCl reabsorption in B-ICs. Second, pendrin activity regulates Na(+) reabsorption by the adjacent principal cells, possibly by interaction with the ATP-mediated paracrine signalling recently identified between ICs and principal cells. Interestingly, the water channel AQP5 was recently found to be expressed at the apical side of B-ICs, in the absence of a basolateral water channel, and pendrin and AQP5 membrane expressions are both inhibited by K(+) depletion, suggesting that pendrin and AQP5 could cooperate to regulate cell volume, a potent stimulus of ATP release

    Deficiency of Carbonic anhydrase II results in a urinary concentrating defect

    Get PDF
    Carbonic anhydrase II (CAII) is expressed along the nephron where it interacts with a number of transport proteins augmenting their activity. Aquaporin-1 (AQP 1 ) interacts with CAII to increase water flux through the water channel. Both CAII and aquaporin-1 are expressed in the thin descending limb (TDL); however, the physiological role of a CAII-AQP 1 interaction in this nephron segment is not known. To determine if CAII was required for urinary concentration, we studied water handling in CAII-deficient mice. CAII-deficient mice demonstrate polyuria and polydipsia as well as an alkaline urine and bicarbonaturia, consistent with a type III renal tubular acidosis. Natriuresis and hypercalciuria cause polyuria, however, CAII-deficient mice did not have increased urinary sodium nor calcium excretion. Further examination revealed dilute urine in the CAII-deficient mice. Urinary concentration remained reduced in CAII-deficient mice relative to wild-type animals even after water deprivation. The renal expression and localization by light microscopy of NKCC 2 and aquaporin-2 was not altered. However, CAII-deficient mice had increased renal AQP 1 expression. CAII associates with and increases water flux through aquaporin-1. Water flux through aquaporin-1 in the TDL of the loop of Henle is essential to the concentration of urine, as this is required to generate a concentrated medullary interstitium. We therefore measured cortical and medullary interstitial concentration in wild-type and CAII-deficient mice. Mice lacking CAII had equivalent cortical interstitial osmolarity to wild-type mice: however, they had reduced medullary interstitial osmolarity. We propose therefore that reduced water flux through aquaporin-1 in the TDL in the absence of CAII prevents the generation of a maximally concentrated medullary interstitium. This, in turn, limits urinary concentration in CAII deficient mice

    Induction of metabolic acidosis with ammonium chloride (NH4Cl) in mice and rats-species differences and technical considerations

    Get PDF
    Ammonium chloride addition to drinking water is often used to induce metabolic acidosis (MA) in rodents but may also cause mild dehydration. Previous microarray screening of acidotic mouse kidneys showed upregulation of genes involved in renal water handling. Thus, we compared two protocols to induce metabolic acidosis in mice and rats: standard 0.28M NH(4)Cl in drinking water or an equivalent amount of NH(4)Cl in food. Both treatments induced MA in mice and rats. In rats, NH (4)Cl in water caused signs of dehydration, reduced mRNA abundance of the vasopression receptor 2 (V2R), increased protein abundance of the aquaporin water channels AQP2 and AQP3 and stimulated phosphorylation of AQP2 at residues Ser256 and Ser261. In contrast, NH(4)Cl in food induced massive diuresis, decreased mRNA levels of V2R, AQP2, and AQP3, did not affect protein abundance of AQP2 and AQP3, and stimulated phosphorylation at Ser261 but not pSer256 of AQP2. In mice, NH(4)Cl in drinking water stimulated urine concentration, increased AQP2 and V2R mRNA levels, and enhanced AQP2 and AQP3 protein expression with higher levels of AQP2 pSer256 and pSer261. Addition of NH(4)Cl to food, stimulated diuresis, had no effect on mRNA levels of AQP2, AQP3, and V2R, and enhanced only AQP3 protein abundance whereas pSer256-AQP2 and pSer261-AQP2 remained unaltered. Similarly, AQP2 staining was more intense and luminal in kidney from mice with NH(4)Cl in water but not in food. Pendrin, SNAT3 and PEPCK mRNA expression in mouse kidney were not affected by the route of N(4)Cl application. Thus, addition of NH(4)Cl to water or food causes MA but has differential effects on diuresis and expression of mRNAs and proteins related to renal water handling. Moreover, mice and rats respond differently to NH(4)Cl loading, and increased water intake and diuresis may be a compensatory mechanism during MA. It may be necessary to consider these effects in planning and interpreting experiments of NH(4)Cl supplementation to animals

    Renal Atp6ap2/(Pro)renin receptor is required for normal vacuolar H+-ATPase function but not for the renin-angiotensin system

    No full text
    ATPase H+-transporting lysosomal accessory protein 2 (Atp6ap2), also known as the (pro)renin receptor, is a type 1 transmembrane protein and an accessory subunit of the vacuolar H+-ATPase (V-ATPase) that may also function within the renin-angiotensin system. However, the contribution of Atp6ap2 to renin-angiotensin-dependent functions remains unconfirmed. Using mice with an inducible conditional deletion of Atp6ap2 in mouse renal epithelial cells, we found that decreased V-ATPase expression and activity in the intercalated cells of the collecting duct impaired acid-base regulation by the kidney. In addition, these mice suffered from marked polyuria resistant to desmopressin administration. Immunoblotting revealed downregulation of the medullary Na+-K+-2Cl- cotransporter NKCC2 in these mice compared with wild-type mice, an effect accompanied by a hypotonic medullary interstitium and impaired countercurrent multiplication. This phenotype correlated with strong autophagic defects in epithelial cells of medullary tubules. Notably, cells with high accumulation of the autophagosomal substrate p62 displayed the strongest reduction of NKCC2 expression. Finally, nephron-specific Atp6ap2 depletion did not affect angiotensin II production, angiotensin II-dependent BP regulation, or sodium handling in the kidney. Taken together, our results show that nephron-specific deletion of Atp6ap2 does not affect the renin-angiotensin system but causes a combination of renal concentration defects and distal renal tubular acidosis as a result of impaired V-ATPase activity

    Acute genetic ablation of pendrin lowers blood pressure in mice

    No full text
    Background. Pendrin, the chloride/bicarbonate exchanger of beta-intercalated cells of the renal connecting tubule and the collecting duct, plays a key role in NaCl reabsorption by the distal nephron. Therefore, pendrin may be important for the control of extracellular fluid volume and blood pressure.Methods. Here, we have used a genetic mouse model in which the expression of pendrin can be switched-on in vivo by the administration of doxycycline. Pendrin can also be rapidly removed when doxycycline administration is discontinued. Therefore, our genetic strategy allows us to test selectively the acute effects of loss of pendrin function.Results. We show that acute loss of pendrin leads to a significant decrease of blood pressure. In addition, acute ablation of pendrin did not alter significantly the acid-base status or blood K+ concentration.Conclusion. By using a transgenic mouse model, avoiding off-target effects related to pharmacological compounds, this study suggests that pendrin could be a novel target to treat hypertension

    Impact of bicarbonate, ammonium chloride, and acetazolamide on hepatic and renal SLC26A4 expression

    Full text link
    SLC26A4 encodes pendrin, a transporter exchanging anions such as chloride, bicarbonate, and iodide. Loss of function mutations of SLC26A4 cause Pendred syndrome characterized by hearing loss and enlarged vestibular aqueducts as well as variable hypothyroidism and goiter. In the kidney, pendrin is expressed in the distal nephron and accomplishes HCO(3)(-) secretion and Cl(-) reabsorption. Renal pendrin expression is regulated by acid-base balance. The liver contributes to acid-base regulation by producing or consuming glutamine, which is utilized by the kidney for generation and excretion of NH(4)(+), paralleled by HCO(3)(-) formation. Little is known about the regulation of pendrin in liver. The present study thus examined the expression of Slc26a4 in liver and kidney of mice drinking tap water without or with NaHCO(3) (150 mM), NH(4)Cl (280 mM) or acetazolamide (3.6 mM) for seven days. As compared to Gapdh transcript levels, Slc26a4 transcript levels were moderately lower in liver than in renal tissue. Slc26a4 transcript levels were not significantly affected by NaHCO(3) in liver, but significantly increased by NaHCO(3) in kidney. Pendrin protein expression was significantly enhanced in kidney and reduced in liver by NaHCO(3). Slc26a4 transcript levels were significantly increased by NH(4)Cl and acetazolamide in liver, and significantly decreased by NH(4)Cl and by acetazolamide in kidney. NH(4)Cl and acetazolamide reduced pendrin protein expression significantly in kidney, but did not significantly modify pendrin protein expression in liver. The observations point to expression of pendrin in the liver and to opposite effects of acidosis on pendrin transcription in liver and kidney
    corecore