246 research outputs found

    Design and in Vitro Evaluation of a New Nano-Microparticulate System for Enhanced Aqueous-Phase Solubility of Curcumin

    Get PDF
    Curcumin, a yellow polyphenol derived from the turmeric Curcuma longa, has been associated with a diverse therapeutic potential including anti-inflammatory, antioxidant, antiviral, and anticancer properties. However, the poor aqueous solubility and low bioavailability of curcumin have limited its potential when administrated orally. In this study, curcumin was encapsulated in a series of novel nano-microparticulate systems developed to improve its aqueous solubility and stability. The nano-microparticulate systems are based entirely on biocompatible, biodegradable, and edible polymers including chitosan, alginate, and carrageenan. The particles were synthesized via ionotropic gelation. Encapsulating the curcumin into the hydrogel nanoparticles yielded a homogenous curcumin dispersion in aqueous solution compared to the free form of curcumin. Also, the in vitro release profile showed up to 95% release of curcumin from the developed nano-microparticulate systems after 9 hours in PBS at pH 7.4 when freeze-dried particles were used.CONACYTCUPIAPharmac

    Seasonal modulation of mesoscale processes alters nutrient availability and plankton communities in the Red Sea

    Get PDF
    Hydrographic and atmospheric forcing set fundamental constraints on the biogeochemistry of aquatic ecosystems and manifest in the patterns of nutrient availability and recycling, species composition of communities, trophic dynamics, and ecosystem metabolism. In the Red Sea, latitudinal gradients in environmental conditions and primary production have been ascribed to fluctuations in Gulf of Aden Water inflow, upwelling/mixing, and regenerated nutrient utilization i.e. rapidly recycled nitrogen in upper layers. However, our understanding of upper layer dynamics and related changes in plankton communities, metabolism and carbon and nitrogen export is limited. We surmised that stratification and mesoscale eddies modulate the nutrient availability and taxonomic identity of plankton communities in the Red Sea. Based on remote-sensing data of sea level anomalies and high resolution in situ measurements (ScanFish) we selected stations for hydrographic CTD profiles, water sampling (nutrients, seawater oxygen stable isotopes [δ18OSW]), phytoplankton and zooplankton collections. In fall 2014, strong stratification subjected the plankton community to an overall nitrogen and phosphorus shortage. The nutrient deficiency increased numbers of heterotrophic dinoflagellates, microzooplankton, and diazotrophs (Trichodesmium, diatom-diazotroph associations [DDAs]), albeit largely decreased phytoplankton and mesozooplankton abundances. In spring 2015, mesoscale eddies increased the nutrient availability, and the thermohaline characteristics and low δ18OSW point to the interaction of eddies with Gulf of Aden Surface Water (GASW). Cyclonic eddies and, most likely, the availability of nutrients associated with the GASW, increased the abundances of autotrophs (diatoms, Prasinophytes) and supported larger numbers of zooplankton and their larvae. We demonstrate that the interplay of stratification, advection of Gulf of Aden water and mesoscale eddies are key elements to better understand changes in plankton community composition, ecosystem metabolism, and macronutrient export in the Red Sea in space and time

    A Novel Aerosol Method for the Production of Hydrogel Particles

    Get PDF
    A novel method of generating hydrogel particles for various applications including drug delivery purposes was developed. This method is based on the production of hydrogel particles from sprayed polymeric nano/microdroplets obtained by a nebulization process that is immediately followed by gelation in a crosslinking fluid. In this study, particle synthesis parameters such as type of nebulizer, type of crosslinker, air pressure, and polymer concentration were investigated for their impact on the mean particle size, swelling behavior, and morphology of the developed particles. Spherical alginate-based hydrogel particles with a mean particle size in the range from 842 to 886 nm were obtained. Using statistical analysis of the factorial design of experiment it was found that the main factors influencing the size and swelling values of the particles are the alginate concentration and the air pressure. Thus, it was demonstrated that the method described in the current study is promising for the generation of hydrogel particles and it constitutes a relatively simple and low-cost system

    Functionalized poly(N-isopropylacrylamide)-based microgels in tumor targeting and drug delivery

    Get PDF
    Over the past several decades, the development of engineered small particles as targeted and drug delivery systems (TDDS) has received great attention thanks to the possibility to overcome the limitations of classical cancer chemotherapy, including targeting incapability, nonspecific action and, consequently, systemic toxicity. Thus, this research aims at using a novel design of Poly(N-isopropylacrylamide) p(NIPAM)-based microgels to specifically target cancer cells and avoid the healthy ones, which is expected to decrease or eliminate the side effects of chemotherapeutic drugs. Smart NIPAM-based microgels were functionalized with acrylic acid and coupled to folic acid (FA), targeting the folate receptors overexpressed by cancer cells and to the chemotherapeutic drug doxorubicin (Dox). The successful conjugation of FA and Dox was demonstrated by dynamic light scattering (DLS), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), UV-VIS analysis, and differential scanning calorimetry (DSC). Furthermore, viability assay performed on cancer and healthy breast cells, suggested the microgels’ biocompatibility and the cytotoxic effect of the conjugated drug. On the other hand, the specific tumor targeting of synthetized microgels was demonstrated by a co-cultured (healthy and cancer cells) assay monitored using confocal microscopy and flow cytometry. Results suggest successful targeting of cancer cells and drug release. These data support the use of pNIPAM-based microgels as good candidates as TDDS

    A New NO-Releasing Nanoformulation for the Treatment of Pulmonary Arterial Hypertension

    Get PDF
    Copyright The Author(s) 2016. This article is published with open access at Springerlink.com. Open Access - This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were madePulmonary arterial hypertension (PAH) is a chronic and progressive disease which continues to carry an unacceptably high mortality and morbidity. The nitric oxide (NO) pathway has been implicated in the pathophysiology and progression of the disease. Its extremely short half-life and systemic effects have hampered the clinical use of NO in PAH. In an attempt to circumvent these major limitations, we have developed a new NO-nanomedicine formulation. The formulation was based on hydrogel-like polymeric composite NO-releasing nanoparticles (NO-RP). The kinetics of NO release from the NO-RP showed a peak at about 120 min followed by a sustained release for over 8 h. The NO-RP did not affect the viability or inflammation responses of endothelial cells. The NO-RP produced concentration-dependent relaxations of pulmonary arteries in mice with PAH induced by hypoxia. In conclusion, NO-RP drugs could considerably enhance the therapeutic potential of NO therapy for PAH.Peer reviewedFinal Published versio

    Predicting and managing primary and secondary non-response to rituximab using B-cell biomarkers in systemic lupus erythematosus

    Get PDF
    Objective: To assess factors associated with primary and secondary non-response to rituximab in systemic lupus erythematosus (SLE) and evaluate management of secondary non-depletion non-response (2NDNR). Methods: 125 patients with SLE treated with rituximab over 12 years were studied prospectively. A major clinical response was defined as improvement of all active British Isles Lupus Assessment Group (BILAG)-2004 domains to grade C/better and no A/B flare. Partial responders were defined by one persistent BILAG B. B-cell subsets were measured using highly sensitive flow cytometry. Patients with 2NDNR, defined by infusion reaction and defective depletion, were treated with ocrelizumab or ofatumumab. Results: 117 patients had evaluable data. In cycle 1 (C1), 96/117 (82%) achieved BILAG response (major=50%, partial=32%). In multivariable analysis, younger age (OR 0.97, 95% CI 0.94 to 1.00) and B-cell depletion at 6 weeks (OR 3.22, 95% CI 1.24 to 8.33) increased the odds of major response. Complete depletion was predicted by normal complement and lower pre-rituximab plasmablasts and was not associated with increased serious infection post-rituximab. Seventy-seven (with data on 72) C1 responders were retreated on clinical relapse. Of these, 61/72 (85%) responded in cycle 2 (C2). Of the 11 C2 non-responders, nine met 2NDNR criteria (incidence=12%) and tested positive for anti-rituximab antibodies. Lack of concomitant immunosuppressant and higher pre-rituximab plasmablasts predicted 2NDNR. Five were switched to ocrelizumab/ofatumumab, and all depleted and responded. Conclusion: Treatment with anti-CD20 agents can be guided by B-cell monitoring and should aim to achieve complete depletion. 2NDNR is associated with anti-rituximab antibodies, and switching to humanised agents restores depletion and response. In SLE, alternative anti-CD20 antibodies may be more consistently effective

    Expanding clinical phenotype and novel insights into the pathogenesis of ICOS deficiency

    Get PDF
    Background: Inducible T cell co-stimulator (ICOS) deficiency has been categorized as a combined immunodeficiency often complicated by enteropathies, autoimmunity, lymphoproliferation, and malignancy. We report seven new patients and four novel ICOS mutations resulting in a common variable immunodeficiency (CVID)–like phenotype and show that dysregulated IL-12 release, reduced cytotoxic T lymphocyte–associated protein 4 (CTLA4) expression, and skewing towards a Th1-dominant phenotype are all associated with inflammatory complications in this condition. Methods: A combination of whole exome and Sanger sequencing was used to identify novel mutations. Standard clinical and immunological evaluation was performed. FACS and ELISA-based assays were used to study cytokine responses and ICOS/ICOSL/CTLA4 expression following stimulation of whole blood and PBMCs with multiple TLR ligands, anti-CD3, and PHA. Results: Four novel ICOS mutations included homozygous c.323_332del, homozygous c.451C>G, and compound heterozygous c.58+1G>A/c.356T>C. The predominant clinical phenotype was that of antibody deficiency associated with inflammatory complications in 4/7 patients. Six out of seven patients were treated with immunoglobulin replacement and one patient died from salmonella sepsis. All patients who were tested showed reduced IL-10 and IL-17 cytokine responses, normal IL-1β, IL6, and TNF release following LPS stimulation and highly elevated IL-12 production in response to combined LPS/IFNγ stimulation. This was associated with skewing of CD4+ T cells towards Th1 phenotype and increased expression of ICOSL on monocytes. Lastly, reduced CTLA4 expression was found in 2 patients. One patient treated with ustekinumab for pancytopenia due to granulomatous bone marrow infiltration failed to respond to this targeted therapy. Conclusions: ICOS deficiency is associated with defective T cell activation, with simultaneously enhanced stimulation of monocytes. The latter is likely to result from a lack of ICOS/ICOSL interaction which might be necessary to provide negative feedback which limits monocytes activation

    Development and validation of a repharsed phase- HPLC method for simultaneous determination of rosiglitazone and glimepiride in combined dosage forms and human plasma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rosiglitazone (ROZ) and glimepiride (GLM) are antidiabetic agents used in the treatment of type 2 diabetes mellitus. A survey of the literature reveals that only one spectrophotometric method has been reported for the simultaneous determination of ROS and GLM in pharmaceutical preparations. However the reported method suffers from the low sensitivity, for this reason, our target was to develop a simple sensitive HPLC method for the simultaneous determination of ROZ and GLM in their combined dosage forms and plasma.</p> <p>Results</p> <p>A simple reversed phase high performance liquid chromatographic (RP-HPLC) method was developed and validated for the simultaneous determination of Rosiglitazone (ROS) and Glimepiride (GLM) in combined dosage forms and human plasma. The separation was achieved using a 150 mm × 4.6 mm i.d., 5 μm particle size Symmetry<sup>® </sup>C18 column. Mobile phase containing a mixture of acetonitrile and 0.02 M phosphate buffer of pH 5 (60: 40, V/V) was pumped at a flow rate of 1 mL/min. UV detection was performed at 235 nm using nicardipine as an internal standard. The method was validated for accuracy, precision, specificity, linearity, and sensitivity. The developed and validated method was successfully used for quantitative analysis of Avandaryl™ tablets. The chromatographic analysis time was approximately 7 min per sample with complete resolution of ROS (t<sub>R </sub>= 3.7 min.), GLM (t<sub>R </sub>= 4.66 min.), and nicardipine (t<sub>R</sub>, 6.37 min). Validation studieswas performed according to ICH Guidelines revealed that the proposed method is specific, rapid, reliable and reproducible. The calibration plots were linear over the concentration ranges 0.10-25 μg/mL and 0.125-12.5 μg/mL with LOD of 0.04 μg/mL for both compounds and limits of quantification 0.13 and 0.11 μg/mL for ROS and GLM respectively.</p> <p>Conclusion</p> <p>The suggested method was successfully applied for the simultaneous analysis of the studied drugs in their co-formulated tablets and human plasma. The mean percentage recoveries in Avandaryl™ tablets were 100.88 ± 1.14 and 100.31 ± 1.93 for ROS and GLM respectively. Statistical comparison of the results with those of the reference method revealed good agreement and proved that there were no significant difference in the accuracy and precision between the two methods respectively. The interference likely to be introduced from some co-administered drugs such as glibenclamide, gliclazide, metformine, pioglitazone and nateglinide was investigated.</p
    • …
    corecore