992 research outputs found

    Hadron properties from QCD bound-state equations: A status report

    Full text link
    Employing an approach based on the Green functions of Landau-gauge QCD, some selected results from a calculation of meson and baryon properties are presented. A rainbow-ladder truncation to the quark Dyson-Schwinger equation is used to arrive at a unified description of mesons and baryons by solving Bethe-Salpeter and covariant Faddeev equations, respectively.Comment: 6 pages, 4 figures; Plenary talk given at the 5-th Int. Conf. on Quarks and Nuclear Physics, Beijing, September 21-26,200

    Running Masses in the Nucleon and its Resonances

    Full text link
    An overarching scientific challenge for the coming decade is to discover the meaning of confinement, its relationship to dynamical chiral symmetry breaking (DCSB) - the origin of visible mass - and the connection between them. In progressing toward meeting this challenge, significant progress has been made using continuum methods in QCD. For example, a novel understanding of gluon and quark confinement and its consequences has begun to emerge from quantum field theory; a clear picture is being drawn of how hadron masses emerge dynamically in a universe with light quarks; and ground-state hadron wave functions with a direct connection to QCD are becoming available, which reveal that quark-quark correlations are crucial in hadron structure. There is growing experimental support for this body of predictions in both elastic and nucleon-to-resonance-transition form factors.Comment: 10 pages, 6 figures. Contribution to the proceedings of NSTAR2015, the 10th International Workshop on the Physics of Excited Nucleons, 25-28 May 2015, Suita Campus, Osaka University, Osaka, Japa

    Monte Carlo simulation of the treatment of uveal melanoma using measured heterogeneous 106Ru plaques

    Get PDF
    Background/Aims: Ruthenium plaques are used for the treatment of ocular tumors. The aim of this work is the comparison between simulated absorbed dose distributions tallied in an anthropomorphic phantom, obtained from ideal homogeneous plaques, and real eye plaques in which the actual heterogeneous distribution of 106Ru was measured. The placement of the plaques with respect to the tumor location was taken into consideration to optimize the effectiveness of the treatment. Methods: The generic CCA and CCB, and the specific CCA1364 and CCB1256 106Ru eye plaques were modeled with the Monte Carlo code PENELOPE. To compare the suitability of each treatment for an anterior, equatorial and posterior tumor location, cumulative dose-volume histograms for the tumors and structures at risk were calculated. Results: Eccentric placements of the plaques, taking into account the inhomogeneities of the emitter map, can substantially reduce the dose delivered to structures at risk while maintaining the prescribed dose at the tumor apex. Conclusions: The emitter map distribution of the plaque and the computerized tomography of the patient used in a Monte Carlo simulation allow an accurate determination of the plaque position with respect to the tumor with the potential to reduce the dose to sensitive structures. © 2018 S. Karger AG, BaselPostprint (published version

    Covariant solution of the three-quark problem in quantum field theory: the nucleon

    Full text link
    We provide details on a recent solution of the nucleon's covariant Faddeev equation in an explicit three-quark approach. The full Poincare-covariant structure of the three-quark amplitude is implemented through an orthogonal basis obtained from a partial-wave decomposition. We employ a rainbow-ladder gluon exchange kernel which allows for a comparison with meson Bethe-Salpeter and baryon quark-diquark studies. We describe the construction of the three-quark amplitude in full detail and compare it to a notation widespread in recent publications. Finally, we discuss first numerical results for the nucleon's amplitude.Comment: 10 pages, 4 figures, 4 tables; Contributed to the 19th International IUPAP Conference on Few-Body Problems in Physics, Bonn, Germany, August 31 - September 5, 200

    Visible and near infrared spectroscopy of Hayabusa re-entry using semi-autonomous tracking

    Get PDF
    A ground-based tracking camera and co-aligned slit-less spectrograph were used to measure the spectral signature of visible radiation emitted from the Hayabusa capsule as it entered into the Earth's atmosphere in June 2010. Good quality spectra were obtained that showed the presence of radiation from the heat shield of the vehicle and the shock-heated air in front of the vehicle. An analysis of the black body nature of the radiation concluded that the peak average temperature of the surface was about (3100±100) K

    Radiometric temperature analysis of the Hayabusa spacecraft re-entry

    Get PDF
    Hayabusa, an unmanned Japanese spacecraft, was launched to study and collect samples from the surface of the asteroid 25143 Itokawa. In June 2010, the Hayabusa spacecraft completed it’s seven year voyage. The spacecraft and the sample return capsule (SRC) re-entered the Earth’s atmosphere over the central Australian desert at speeds on the order of 12 km/s. This provided a rare opportunity to experimentally investigate the radiative heat transfer from the shock-compressed gases in front of the sample return capsule at true-flight conditions. This paper reports on the results of observations from a tracking camera situated on the ground about 100 km from where the capsule experienced peak heating during re-entry

    Magnescope: Applications in nondestructive evaluation

    Get PDF
    This paper describes recent results obtained with the Magnescope, which has been used on location in industrial environments and has successfully detected impending fatigue failure, creep damage, applied stress, and microstructural differences. It is concluded that the device provides a useful nondestructive method for evaluating the mechanical properties of materials through the measurement of their structure sensitive magnetic properties
    • …
    corecore