1,061 research outputs found

    Ground-layer wavefront reconstruction from multiple natural guide stars

    Get PDF
    Observational tests of ground layer wavefront recovery have been made in open loop using a constellation of four natural guide stars at the 1.55 m Kuiper telescope in Arizona. Such tests explore the effectiveness of wide-field seeing improvement by correction of low-lying atmospheric turbulence with ground-layer adaptive optics (GLAO). The wavefronts from the four stars were measured simultaneously on a Shack-Hartmann wavefront sensor (WFS). The WFS placed a 5 x 5 array of square subapertures across the pupil of the telescope, allowing for wavefront reconstruction up to the fifth radial Zernike order. We find that the wavefront aberration in each star can be roughly halved by subtracting the average of the wavefronts from the other three stars. Wavefront correction on this basis leads to a reduction in width of the seeing-limited stellar image by up to a factor of 3, with image sharpening effective from the visible to near infrared wavelengths over a field of at least 2 arc minutes. We conclude that GLAO correction will be a valuable tool that can increase resolution and spectrographic throughput across a broad range of seeing-limited observations.Comment: 25 pages, 8 figures, to be published in Astrophys.

    Direct Imaging of a Cold Jovian Exoplanet in Orbit around the Sun-like Star GJ 504

    Full text link
    Several exoplanets have recently been imaged at wide separations of >10 AU from their parent stars. These span a limited range of ages (<50 Myr) and atmospheric properties, with temperatures of 800--1800 K and very red colors (J - H > 0.5 mag), implying thick cloud covers. Furthermore, substantial model uncertainties exist at these young ages due to the unknown initial conditions at formation, which can lead to an order of magnitude of uncertainty in the modeled planet mass. Here, we report the direct imaging discovery of a Jovian exoplanet around the Sun-like star GJ 504, detected as part of the SEEDS survey. The system is older than all other known directly-imaged planets; as a result, its estimated mass remains in the planetary regime independent of uncertainties related to choices of initial conditions in the exoplanet modeling. Using the most common exoplanet cooling model, and given the system age of 160 [+350, -60] Myr, GJ 504 b has an estimated mass of 4 [+4.5, -1.0] Jupiter masses, among the lowest of directly imaged planets. Its projected separation of 43.5 AU exceeds the typical outer boundary of ~30 AU predicted for the core accretion mechanism. GJ 504 b is also significantly cooler (510 [+30, -20] K) and has a bluer color (J-H = -0.23 mag) than previously imaged exoplanets, suggesting a largely cloud-free atmosphere accessible to spectroscopic characterization. Thus, it has the potential of providing novel insights into the origins of giant planets, as well as their atmospheric properties.Comment: 20 pages, 12 figures, Accepted for publication in ApJ. Minor updates from the version

    Imaging of a Transitional Disk Gap in Reflected Light: Indications of Planet Formation Around the Young Solar Analog LkCa 15

    Get PDF
    We present H- and Ks-band imaging data resolving the gap in the transitional disk around LkCa 15, revealing the surrounding nebulosity. We detect sharp elliptical contours delimiting the nebulosity on the inside as well as the outside, consistent with the shape, size, ellipticity, and orientation of starlight reflected from the far-side disk wall, whereas the near-side wall is shielded from view by the disk's optically thick bulk. We note that forward-scattering of starlight on the near-side disk surface could provide an alternate interpretation of the nebulosity. In either case, this discovery provides confirmation of the disk geometry that has been proposed to explain the spectral energy distributions (SED) of such systems, comprising an optically thick outer disk with an inner truncation radius of ~46 AU enclosing a largely evacuated gap. Our data show an offset of the nebulosity contours along the major axis, likely corresponding to a physical pericenter offset of the disk gap. This reinforces the leading theory that dynamical clearing by at least one orbiting body is the cause of the gap. Based on evolutionary models, our high-contrast imagery imposes an upper limit of 21 Jupiter masses on companions at separations outside of 0.1" and of 13 Jupiter masses outside of 0.2". Thus, we find that a planetary system around LkCa 15 is the most likely explanation for the disk architecture.Comment: 5 pages, 4 figures, accepted for publication in ApJ Letters. Minor change to Figure

    Characterization of the gaseous companion {\kappa} Andromedae b: New Keck and LBTI high-contrast observations

    Get PDF
    We previously reported the direct detection of a low mass companion at a projected separation of 55+-2 AU around the B9 type star {\kappa} Andromedae. The properties of the system (mass ratio, separation) make it a benchmark for the understanding of the formation and evolution of gas giant planets and brown dwarfs on wide-orbits. We present new angular differential imaging (ADI) images of the Kappa Andromedae system at 2.146 (Ks), 3.776 (L'), 4.052 (NB 4.05) and 4.78 {\mu}m (M') obtained with Keck/NIRC2 and LBTI/LMIRCam, as well as more accurate near-infrared photometry of the star with the MIMIR instrument. We derive a more accurate J = 15.86 +- 0.21, H = 14.95 +- 0.13, Ks = 14.32 +- 0.09 mag for {\kappa} And b. We redetect the companion in all our high contrast observations. We confirm previous contrasts obtained at Ks and L' band. We derive NB 4.05 = 13.0 +- 0.2 and M' = 13.3 +- 0.3 mag and estimate Log10(L/Lsun) = -3.76 +- 0.06. We build the 1-5 microns spectral energy distribution of the companion and compare it to seven PHOENIX-based atmospheric models in order to derive Teff = 1900+100-200 K. Models do not set constrains on the surface gravity. ``Hot-start" evolutionary models predict masses of 14+25-2 MJup based on the luminosity and temperature estimates, and considering a conservative age range for the system (30+120-10 Myr). ``warm-start" evolutionary tracks constrain the mass to M >= 11 MJup. Therefore, the mass of {\kappa} Andromedae b mostly falls in the brown-dwarf regime, due to remaining uncertainties in age and mass-luminosity models. According to the formation models, disk instability in a primordial disk could account for the position and a wide range of plausible masses of {\kappa} And b.Comment: 20 pages, 16 figures, accepted for publication in Astronomy and Astrophysics on August 6, 201

    Direct Imaging of Fine Structures in Giant Planet Forming Regions of the Protoplanetary Disk around AB Aurigae

    Full text link
    We report high-resolution 1.6 \micron polarized intensity (PIPI) images of the circumstellar disk around the Herbig Ae star AB Aur at a radial distance of 22 AU (0."150."15) up to 554 AU (3.""85), which have been obtained by the high-contrast instrument HiCIAO with the dual-beam polarimetry. We revealed complicated and asymmetrical structures in the inner part (\lesssim140 AU) of the disk, while confirming the previously reported outer (rr \gtrsim200 AU) spiral structure. We have imaged a double ring structure at \sim40 and \sim100 AU and a ring-like gap between the two. We found a significant discrepancy of inclination angles between two rings, which may indicate that the disk of AB Aur is warped. Furthermore, we found seven dips (the typical size is \sim45 AU or less) within two rings as well as three prominent PIPI peaks at \sim40 AU. The observed structures, including a bumpy double ring, a ring-like gap, and a warped disk in the innermost regions, provide essential information for understanding the formation mechanism of recently detected wide-orbit (rr >>20 AU) planets.Comment: 12 pages, 3 figure

    High-Contrast NIR Polarization Imaging of MWC480

    Full text link
    One of the key predictions of modeling from the IR excess of Herbig Ae stars is that for protoplanetary disks, where significant grain growth and settling has occurred, the dust disk has flattened to the point that it can be partially or largely shadowed by the innermost material at or near the dust sublimation radius. When the self-shadowing has already started, the outer disk is expected to be detected in scattered light only in the exceptional cases that the scale height of the dust disk at the sublimation radius is smaller than usual. High-contrast imaging combined with the IR spectral energy distribution allow us to measure the degree of flattening of the disk, as well as to determine the properties of the outer disk. We present polarimetric differential imaging in HH band obtained with Subaru/HiCIAO of one such system, MWC 480. The HiCIAO data were obtained at a historic minimum of the NIR excess. The disk is detected in scattered light from 0\farcs2-1\farcs0 (27.4-137AU). Together with the marginal detection of the disk from 1998 February 24 by HST/NICMOS, our data constrain the opening half angle for the disk to lie between 1.3θ2.2\leq\theta\leq 2.2^\circ. When compared with similar measures in CO for the gas disk from the literature, the dust disk subtends only \sim30% of the gas disk scale height (H/R\sim0.03). Such a dust disk is a factor of 5-7 flatter than transitional disks, which have structural signatures that giant planets have formed.Comment: 21 pages, 6 figures, 1 table, ApJ accepted 2012-05-0

    Detailed structure of the outer disk around HD 169142 with polarized light in H-band

    Full text link
    Coronagraphic imagery of the circumstellar disk around HD 169142 in H-band polarized intensity (PI) with Subaru/HiCIAO is presented. The emission scattered by dust particles at the disk surface in 0.2" <= r <= 1.2", or 29 <= r <= 174 AU, is successfully detected. The azimuthally-averaged radial profile of the PI shows a double power-law distribution, in which the PIs in r=29-52 AU and r=81.2-145 AU respectively show r^{-3}-dependence. These two power-law regions are connected smoothly with a transition zone (TZ), exhibiting an apparent gap in r=40-70 AU. The PI in the inner power-law region shows a deep minimum whose location seems to coincide with the point source at \lambda = 7 mm. This can be regarded as another sign of a protoplanet in TZ. The observed radial profile of the PI is reproduced by a minimally flaring disk with an irregular surface density distribution or with an irregular temperature distribution or with the combination of both. The depletion factor of surface density in the inner power-law region (r< 50 AU) is derived to be <= 0.16 from a simple model calculation. The obtained PI image also shows small scale asymmetries in the outer power-law region. Possible origins for these asymmetries include corrugation of the scattering surface in the outer region, and shadowing effect by a puffed up structure in the inner power-law region.Comment: 26 pages, 7 figures, accepted for publication in PAS
    corecore