1,811 research outputs found

    Kondo effect in a one-electron double quantum dot: Oscillations of the Kondo current in a weak magnetic field

    Full text link
    We present transport measurements of the Kondo effect in a double quantum dot charged with only one or two electrons, respectively. For the one electron case we observe a surprising quasi-periodic oscillation of the Kondo conductance as a function of a small perpendicular magnetic field |B| \lesssim 50mT. We discuss possible explanations of this effect and interpret it by means of a fine tuning of the energy mismatch of the single dot levels of the two quantum dots. The observed degree of control implies important consequences for applications in quantum information processing

    Spin blockade in ground state resonance of a quantum dot

    Full text link
    We present measurements on spin blockade in a laterally integrated quantum dot. The dot is tuned into the regime of strong Coulomb blockade, confining ~ 50 electrons. At certain electronic states we find an additional mechanism suppressing electron transport. This we identify as spin blockade at zero bias, possibly accompanied by a change in orbital momentum in subsequent dot ground states. We support this by probing the bias, magnetic field and temperature dependence of the transport spectrum. Weak violation of the blockade is modelled by detailed calculations of non-linear transport taking into account forbidden transitions.Comment: 4 pages, 4 figure

    An electrostatically defined serial triple quantum dot charged with few electrons

    Full text link
    A serial triple quantum dot (TQD) electrostatically defined in a GaAs/AlGaAs heterostructure is characterized by using a nearby quantum point contact as charge detector. Ground state stability diagrams demonstrate control in the regime of few electrons charging the TQD. An electrostatic model is developed to determine the ground state charge configurations of the TQD. Numerical calculations are compared with experimental results. In addition, the tunneling conductance through all three quantum dots in series is studied. Quantum cellular automata processes are identified, which are where charge reconfiguration between two dots occurs in response to the addition of an electron in the third dot.Comment: 12 pages, 9 figure

    Aversive bimodal associations differently impact visual and olfactory memory performance in Drosophila

    Get PDF

    Mature natural killer cell and lymphoid tissue–inducing cell development requires Id2-mediated suppression of E protein activity

    Get PDF
    The Id2 transcriptional repressor is essential for development of natural killer (NK) cells, lymphoid tissue–inducing (LTi) cells, and secondary lymphoid tissues. Id2 was proposed to regulate NK and LTi lineage specification from multipotent progenitors through suppression of E proteins. We report that NK cell progenitors are not reduced in the bone marrow (BM) of Id2−/− mice, demonstrating that Id2 is not essential for NK lineage specification. Rather, Id2 is required for development of mature (m) NK cells. We define the mechanism by which Id2 functions by showing that a reduction in E protein activity, through deletion of E2A, overcomes the need for Id2 in development of BM mNK cells, LTi cells, and secondary lymphoid tissues. However, mNK cells are not restored in the blood or spleen of Id2−/−E2A−/− mice, suggesting a role for Id2 in suppression of alternative E proteins after maturation. Interestingly, the few splenic mNK cells in Id2−/− and Id2−/−E2A−/− mice have characteristics of thymus-derived NK cells, which develop in the absence of Id2, implying a differential requirement for Id2 in BM and thymic mNK development. Our findings redefine the essential functions of Id2 in lymphoid development and provide insight into the dynamic regulation of E and Id proteins during this process

    Black Hole - Neutron Star Mergers as Central Engines of Gamma-Ray Bursts

    Get PDF
    Hydrodynamic simulations of the merger of stellar mass black hole - neutron star binaries (BH/NS) are compared with mergers of binary neutron stars (NS/NS). The simulations are Newtonian, but take into account the emission and backreaction of gravitational waves. The use of a physical nuclear equation of state allows us to include the effects of neutrino emission. For low neutron star to black hole mass ratios the neutron star transfers mass to the black hole during a few cycles of orbital decay and subsequent widening before finally being disrupted, whereas for ratios near unity the neutron star is already distroyed during its first approach. A gas mass between about 0.3 and about 0.7 solar masses is left in an accretion torus around the black hole and radiates neutrinos at a luminosity of several 10^{53} erg/s during an estimated accretion time scale of about 0.1 s. The emitted neutrinos and antineutrinos annihilate into electron-positron pairs with efficiencies of 1-3% percent and rates of up to 2*10^{52} erg/s, thus depositing an energy of up to 10^{51} erg above the poles of the black hole in a region which contains less than 10^{-5} solar masses of baryonic matter. This could allow for relativistic expansion with Lorentz factors around 100 and is sufficient to explain apparent burst luminosities of up to several 10^{53} erg/s for burst durations of approximately 0.1-1 s, if the gamma emission is collimated in two moderately focussed jets in a fraction of about 1/100-1/10 of the sky.Comment: 8 pages, LaTex, 4 postscript figures, 2 tables. ApJ Letters, accepted; revised and shortened version, Fig. 2 change

    Spin-splitting in the quantum Hall effect of disordered GaAs layers with strong overlap of the spin subbands

    Full text link
    With minima in the diagonal conductance G_{xx} and in the absolute value of the derivative |dG_{xy}/dB| at the Hall conductance value G_{xy}=e^{2}/h, spin-splitting is observed in the quantum Hall effect of heavily Si-doped GaAs layers with low electron mobility 2000 cm^2/Vs in spite of the fact that the spin-splitting is much smaller than the level broadening. Experimental results can be explained in the frame of the scaling theory of the quantum Hall effect, applied independently to each of the two spin subbands.Comment: 4 pages, 4 figure
    • …
    corecore