14,572 research outputs found

    Cosmological Magnetic Fields from Gauge-Mediated Supersymmetry-Breaking Models

    Get PDF
    We study the generation of primordial magnetic fields, coherent over cosmologically interesting scales, by gravitational creation of charged scalar particles during the reheating period. We show that magnetic fields consistent with those detected by observation may obtained if the particle mean life \tau_s is in the range 10^{-14} sec \leq \tau_s \leq 10{-7} sec. We apply this mechanism to minimal gauge mediated supersymmetry-breaking models, in the case in which the lightest stau \tilde\tau_1 is the next-to-lightest supersymmetric particle. We show that, for a large range of phenomenologically acceptable values of the supersymmetry-breaking scale \sqrt{F}, the generated primordial magnetic field can be strong enough to seed the galactic dynamo.Comment: 12 pages, Latex. Final version accepted for publication in Phys. Lett.

    Functional approach to quantum friction: effective action and dissipative force

    Get PDF
    We study the Casimir friction due to the relative, uniform, lateral motion of two parallel semitransparent mirrors coupled to a vacuum real scalar field, ϕ\phi. We follow a functional approach, whereby nonlocal terms in the action for ϕ\phi, concentrated on the mirrors' locii, appear after functional integration of the microscopic degrees of freedom. This action for ϕ\phi, which incorporates the relevant properties of the mirrors, is then used as the starting point for two complementary evaluations: Firstly, we calculate the { in-out} effective action for the system, which develops an imaginary part, hence a non-vanishing probability for the decay (because of friction) of the initial vacuum state. Secondly, we evaluate another observable: the vacuum expectation value of the frictional force, using the { in-in} or Closed Time Path formalism. Explicit results are presented for zero-width mirrors and half-spaces, in a model where the microscopic degrees of freedom at the mirrors are a set of identical quantum harmonic oscillators, linearly coupled to $\phi

    Non-equilibrium Lifshitz theory as a steady state of a full dynamical quantum system

    Get PDF
    In this work we analyze the validity of Lifshitz's theory for the case of non-equilibrium scenarios from a full quantum dynamical approach. We show that Lifshitz's framework for the study of the Casimir pressure is the result of considering the long-time regime (or steady state) of a well-defined fully quantized problem, subjected to initial conditions for the electromagnetic field interacting with real materials. For this, we implement the closed time path formalism developed in previous works to study the case of two half spaces (modeled as composite environments, consisting in quantum degrees of freedom plus thermal baths) interacting with the electromagnetic field. Starting from initial uncorrelated free subsystems, we solve the full time evolution, obtaining general expressions for the different contributions to the pressure that take part on the transient stage. Using the analytic properties of the retarded Green functions, we obtain the long-time limit of these contributions to the total Casimir pressure. We show that, in the steady state, only the baths' contribute, in agreement with the results of previous works, where this was assumed without justification. We also study in detail the physics of the initial conditions' contribution and the concept of modified vacuum modes, giving insights about in which situations one would expect a non vanishing contribution at the steady state of a non-equilibrium scenario. This would be the case when considering finite width slabs instead of half-spaces

    Experimental evidence of solitary wave interaction in Hertzian chains

    Full text link
    We study experimentally the interaction between two solitary waves that approach one to another in a linear chain of spheres interacting via the Hertz potential. When these counter propagating waves collide, they cross each other and a phase shift respect to the noninteracting waves is introduced, as a result of the nonlinear interaction potential. This observation is well reproduced by our numerical simulations and it is shown to be independent of viscoelastic dissipation at the beads contact. In addition, when the collision of equal amplitude and synchronized counter propagating waves takes place, we observe that two secondary solitary waves emerge from the interacting region. The amplitude of secondary solitary waves is proportional to the amplitude of incident waves. However, secondary solitary waves are stronger when the collision occurs at the middle contact in chains with even number of beads. Although numerical simulations correctly predict the existence of these waves, experiments show that their respective amplitude are significantly larger than predicted. We attribute this discrepancy to the rolling friction at the beads contacts during solitary wave propagation

    Pathological element-based active device models and their application to symbolic analysis

    Get PDF
    This paper proposes new pathological element-based active device models which can be used in analysis tasks of linear(ized) analog circuits. Nullators and norators along with the voltage mirror-current mirror (VM-CM) pair (collectively known as pathological elements) are used to model the behavior of active devices in voltage-, current-, and mixed-mode, also considering parasitic elements. Since analog circuits are transformed to nullor-based equivalent circuits or VM-CM pairs or as a combination of both, standard nodal analysis can be used to formulate the admittance matrix. We present a formulation method in order to build the nodal admittance (NA) matrix of nullor-equivalent circuits, where the order of the matrix is given by the number of nodes minus the number of nullors. Since pathological elements are used to model the behavior of active devices, we introduce a more efficient formulation method in order to compute small-signal characteristics of pathological element-based equivalent circuits, where the order of the NA matrix is given by the number of nodes minus the number of pathological elements. Examples are discussed in order to illustrate the potential of the proposed pathological element-based active device models and the new formulation method in performing symbolic analysis of analog circuits. The improved formulation method is compared with traditional formulation methods, showing that the NA matrix is more compact and the generation of nonzero coefficients is reduced. As a consequence, the proposed formulation method is the most efficient one reported so far, since the CPU time and memory consumption is reduced when recursive determinant-expansion techniques are used to solve the NA matrix.Promep-Mexico UATLX-PTC-088Junta de Andalucía TIC-2532Ministerio de Educación y Ciencia TEC2007-67247, TEC2010-14825UC-MEXUS-CONACyT CN-09-31

    NASA Human System Risk Assessment Process

    Get PDF
    NASA utilizes an evidence based system to perform risk assessments for the human system for spaceflight missions. The center of this process is the multi-disciplinary Human System Risk Board (HSRB). The HSRB is chartered from the Chief Health and Medical Officer (OCHMO) at NASA Headquarters. The HSRB reviews all human system risks via an established comprehensive risk and configuration management plan based on a project management approach. The HSRB facilitates the integration of human research (terrestrial and spaceflight), medical operations, occupational surveillance, systems engineering and many other disciplines in a comprehensive review of human system risks. The HSRB considers all factors that influence human risk. These factors include pre-mission considerations such as screening criteria, training, age, sex, and physiological condition. In mission factors such as available countermeasures, mission duration and location and post mission factors such as time to return to baseline (reconditioning), post mission health screening, and available treatments. All of the factors influence the total risk assessment for each human risk. The HSRB performed a comprehensive review of all potential inflight medical conditions and events and over the course of several reviews consolidated the number of human system risks to 30, where the greatest emphasis is placed for investing program dollars for risk mitigation. The HSRB considers all available evidence from human research and, medical operations and occupational surveillance in assessing the risks for appropriate mitigation and future work. All applicable DRMs (low earth orbit for 6 and 12 months, deep space for 30 days and 1 year, a lunar mission for 1 year, and a planetary mission for 3 years) are considered as human system risks are modified by the hazards associated with space flight such as microgravity, exposure to radiation, distance from the earth, isolation and a closed environment. Each risk has a summary two-page assessment representing the state of knowledge/evidence of that risk, available risk mitigations, traceability to the Space Flight Human System Standards (SFHSS) and program requirements, and future work required. These data then can drive coordinated budgets across the Human Research Program, the International Space Station, Crew Health and Safety and Advanced Exploration System budgets to provide the most economical and timely mitigations. The risk assessments were completed for the 6 DRMs and serve as the baseline for which subsequent research and technology development and crew health care portfolios can be assessed. The HSRB reviews each risk at least annually or when new evidence/information is available that adds to the body of evidence. The current status of each risk can be reported to program management for operations, budget reviews and general oversight of the human system risk management program

    O programa nacional de fortalecimento da agricultura familiar no Brasil: uma análise sobre a distribuição regional e setorial dos recursos.

    Get PDF
    No Brasil, as políticas públicas para o espaço rural sempre tenderam a priorizar a agricultura patronal, em detrimento dos agricultores familiares. Todavia, os estudos realizados pelos órgãos FAO - INCRA deram subsídio para a criação do Programa Nacional de Fortalecimento da Agricultura Familiar (PRONAF), resultando em um novo direcionamento dos investimentos públicos, os quais passaram a contemplar o segmento dos agricultores familiares. Entende-se o PRONAF como uma política não-compensatória, que, apesar de seus problemas, tem contribuído de fato para mudanças e melhorias no espaço agrário brasileiro. Desde sua criação no final da década de 1990, o PRONAF passou por várias mudanças em sua estrutura administrativa e operacional, a fim de alcançar seus objetivos e adequar-se face a complexa realidade social agrária brasileira. Sendo assim, o presente estudo visa discutir as ações do Estado por meio desse Programa, a partir de suas linhas de atuação, bem como analisar a distribuição de suas concessões de crédito regional e setorialmente. Assim, os procedimentos metodológicos utilizados para a realização deste trabalho compreendem pesquisa bibliográfica e documental, além de pesquisa em fontes secundárias, no intuito de obter dados e informações relevantes para a análise das relações sociais estabelecidas em meio a esse processo de concretização e espacialização desse Programa. Dentre as implicações do PRONAF pode-se notar em âmbito nacional, uma diminuição da disparidade regional brasileira, bem como a preocupação que o Programa tem demonstrado com os aspectos socioculturais locais e regionais, como forma de garantir que seus investimentos perpassem a dimensão econômica, mas valorize outras dimensões, a exemplo dos elementos culturais
    corecore