181 research outputs found

    Recognizing Treelike k-Dissimilarities

    Full text link
    A k-dissimilarity D on a finite set X, |X| >= k, is a map from the set of size k subsets of X to the real numbers. Such maps naturally arise from edge-weighted trees T with leaf-set X: Given a subset Y of X of size k, D(Y) is defined to be the total length of the smallest subtree of T with leaf-set Y . In case k = 2, it is well-known that 2-dissimilarities arising in this way can be characterized by the so-called "4-point condition". However, in case k > 2 Pachter and Speyer recently posed the following question: Given an arbitrary k-dissimilarity, how do we test whether this map comes from a tree? In this paper, we provide an answer to this question, showing that for k >= 3 a k-dissimilarity on a set X arises from a tree if and only if its restriction to every 2k-element subset of X arises from some tree, and that 2k is the least possible subset size to ensure that this is the case. As a corollary, we show that there exists a polynomial-time algorithm to determine when a k-dissimilarity arises from a tree. We also give a 6-point condition for determining when a 3-dissimilarity arises from a tree, that is similar to the aforementioned 4-point condition.Comment: 18 pages, 4 figure

    Evidence of Weak Habitat Specialisation in Microscopic Animals

    Get PDF
    Macroecology and biogeography of microscopic organisms (any living organism smaller than 2 mm) are quickly developing into fruitful research areas. Microscopic organisms also offer the potential for testing predictions and models derived from observations on larger organisms due to the feasibility of performing lab and mesocosm experiments. However, more empirical knowledge on the similarities and differences between micro- and macro-organisms is needed to ascertain how much of the results obtained from the former can be generalised to the latter. One potential misconception, based mostly on anedoctal evidence rather than explicit tests, is that microscopic organisms may have wider ecological tolerance and a lower degree of habitat specialisation than large organisms. Here we explicitly test this hypothesis within the framework of metacommunity theory, by studying host specificify in the assemblages of bdelloid rotifers (animals about 350 µm in body length) living in different species of lichens in Sweden. Using several regression-based and ANOVA analyses and controlling for both spatial structure and the kind of substrate the lichen grow over (bark vs rock), we found evidence of significant but weak species-specific associations between bdelloids and lichens, a wide overlap in species composition between lichens, and wide ecological tolerance for most bdelloid species. This confirms that microscopic organisms such as bdelloids have a lower degree of habitat specialisation than larger organisms, although this happens in a complex scenario of ecological processes, where source-sink dynamics and geographic distances seem to have no effect on species composition at the analysed scale

    Transoceanic Dispersal and Subsequent Diversification on Separate Continents Shaped Diversity of the Xanthoparmelia pulla Group (Ascomycota)

    Get PDF
    In traditional morphology-based concepts many species of lichenized fungi have world-wide distributions. Molecular data have revolutionized the species delimitation in lichens and have demonstrated that we underestimated the diversity of these organisms. The aim of this study is to explore the phylogeography and the evolutionary patterns of the Xanthoparmelia pulla group, a widespread group of one of largest genera of macrolichens. We used a dated phylogeny based on nuITS and nuLSU rDNA sequences and performed an ancestral range reconstruction to understand the processes and explain their current distribution, dating the divergence of the major lineages in the group. An inferred age of radiation of parmelioid lichens and the age of a Parmelia fossil were used as the calibration points for the phylogeny. The results show that many species of the X. pulla group as currently delimited are polyphyletic and five major lineages correlate with their geographical distribution and the biosynthetic pathways of secondary metabolites. South Africa is the area where the X. pulla group radiated during the Miocene times, and currently is the region with the highest genetic, morphological and chemical diversity. From this center of radiation the different lineages migrated by long-distance dispersal to others areas, where secondary radiations developed. The ancestral range reconstruction also detected that a secondary lineage migrated from Australia to South America via long-distance dispersal and subsequent continental radiation

    Solving the Multidimensional Knapsack Problem Using an Evolutionary Algorithm Hybridized with Branch and Bound

    Full text link
    Abstract. A hybridization of an evolutionary algorithm (EA) with the branch and bound method (B&B) is presented in this paper. Both tech-niques cooperate by exchanging information, namely lower bounds in the case of the EA, and partial promising solutions in the case of the B&B. The multidimensional knapsack problem has been chosen as a bench-mark. To be precise, the algorithms have been tested on large problems instances from the OR-library. As it will be shown, the hybrid approach can provide high quality results, better than those obtained by the EA and the B&B on their own.

    Progress and Challenges in Coupled Hydrodynamic-Ecological Estuarine Modeling

    Get PDF

    Observations on the cysts of Hypotrich ciliates

    No full text
    corecore