134 research outputs found
Distinctive dielectric properties of nematic liquid crystal dimers
We provide an overview of the effect of the molecular structure on the dielectric properties of dimers exhibiting nematic and twist-bend nematic phases with special focus on how the conformational distribution changes are reflected by the dielectric behaviour. Nematic dimers show distinctive dielectric properties which differ from those of archetypical nematic liquid crystals, as for example, unusual temperature dependence of the static permittivity or dielectric spectra characterised by two low-frequency relaxation processes with correlated strengths. The interpretation of such characteristic behaviour requires that account is taken of the effect of molecular flexibility on the energetically favoured molecular shapes. The anisotropic nematic interactions greatly influence the conformational distribution. Dielectric behaviour can be used to track those conformational changes due to dependence of the averaged molecular dipole moment on the averaged molecular shape. Results for a number of dimers are compared and analysed on the basis of the influence of details of the molecular structure, using a recently developed theory for the dielectric properties of dimers.Postprint (author's final draft
Accessible Light Bullets via synergetic nonlinearities
We introduce a new form of stable spatio-temporal self-trapped optical
packets stemming from the interplay of local and nonlocal nonlinearities.
Pulsed self-trapped light beams in media with both electronic and molecular
nonlinear responses are addressed to prove that spatial and temporal effects
can be decoupled, allowing for independent tuning. We numerically demonstrate
that (3+1)D light bullets and anti-bullets, i. e. bright and dark temporal
solitons embedded in stable (2+1)D nonlocal spatial solitons, can be generated
in reorientational media under experimentally feasible conditions.Comment: 17 pages, 4 figures A scale error in the index perturbation vs
average power dependence has been fixe
The phase behavior of a binary mixture of rodlike and disclike mesogens: Monte Carlo simulation, theory, and experiment
Published versio
Theory of solvation in polar nematics
We develop a linear response theory of solvation of ionic and dipolar solutes
in anisotropic, axially symmetric polar solvents. The theory is applied to
solvation in polar nematic liquid crystals. The formal theory constructs the
solvation response function from projections of the solvent dipolar
susceptibility on rotational invariants. These projections are obtained from
Monte Carlo simulations of a fluid of dipolar spherocylinders which can exist
both in the isotropic and nematic phase. Based on the properties of the solvent
susceptibility from simulations and the formal solution, we have obtained a
formula for the solvation free energy which incorporates experimentally
available properties of nematics and the length of correlation between the
dipoles in the liquid crystal. Illustrative calculations are presented for the
Stokes shift and Stokes shift correlation function of coumarin-153 in
4-n-pentyl-4'-cyanobiphenyl (5CB) and 4,4-n-heptyl-cyanopiphenyl (7CB) solvents
as a function of temperature in both the nematic and isotropic phase.Comment: 19 pages, 9 figure
Squeezing a drop of nematic liquid crystal with strong elasticity effects
The One Drop Filling (ODF) method is widely used for the industrial manufacture of liquid crystal devices. Motivated by the need for a better fundamental understanding of the reorientation of the molecules due to the flow of the liquid crystal during this manufacturing method, we formulate and analyze a squeeze-film model for the ODF method. Specifically, we consider a nematic squeeze film in the asymptotic regime in which the drop is thin, inertial effects are weak, and elasticity effects are strong for four specific anchoring cases at the top plate and the substrate (namely, planar, homeotropic, hybrid aligned nematic, and π-cell infinite anchoring conditions) and for two different scenarios for the motion of the top plate (namely, prescribed speed and prescribed force). Analytical expressions for the leading- and first-order director angles, radial velocity, vertical velocity, and pressure are obtained. Shear and couple stresses at the top plate and the substrate are calculated and are interpreted in terms of the effect that flow may have on the alignment of the molecules at the plates, potentially leading to the formation of spurious optical defects (“mura”)
Bifurcations in annular electroconvection with an imposed shear
We report an experimental study of the primary bifurcation in
electrically-driven convection in a freely suspended film. A weakly conducting,
submicron thick smectic liquid crystal film was supported by concentric
circular electrodes. It electroconvected when a sufficiently large voltage
was applied between its inner and outer edges. The film could sustain rapid
flows and yet remain strictly two-dimensional. By rotation of the inner
electrode, a circular Couette shear could be independently imposed. The control
parameters were a dimensionless number , analogous to the Rayleigh
number, which is and the Reynolds number of the
azimuthal shear flow. The geometrical and material properties of the film were
characterized by the radius ratio , and a Prandtl-like number . Using measurements of current-voltage characteristics of a large number of
films, we examined the onset of electroconvection over a broad range of
, and . We compared this data quantitatively to
the results of linear stability theory. This could be done with essentially no
adjustable parameters. The current-voltage data above onset were then used to
infer the amplitude of electroconvection in the weakly nonlinear regime by
fitting them to a steady-state amplitude equation of the Landau form. We show
how the primary bifurcation can be tuned between supercritical and subcritical
by changing and .Comment: 17 pages, 12 figures. Submitted to Phys. Rev. E. Minor changes after
refereeing. See also http://mobydick.physics.utoronto.c
- …