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Distinctive dielectric properties of nematic liquid crystal dimers 

We provide an overview of the effect of the molecular structure on the dielectric 

properties of dimers exhibiting nematic and twist-bend nematic phases with 

special focus on how the conformational distribution changes are reflected by the 

dielectric behaviour. Nematic dimers show distinctive dielectric properties which 

differ from those of archetypical nematic liquid crystals, as for example unusual 

temperature dependence of the static permittivity or dielectric spectra 

characterized by two low-frequency relaxation processes with correlated 

strengths. The interpretation of such characteristic behaviour requires that 

account is taken of the effect of molecular flexibility on the energetically 

favoured molecular shapes. The anisotropic nematic interactions greatly 

influence the conformational distribution. Dielectric behaviour can be used to 

track those conformational changes due to dependence of the averaged molecular 

dipole moment on the averaged molecular shape. Results for a number dimers are 

compared and analysed on the basis  of the influence of details of the molecular 

structure, using a recently developed theory for the dielectric properties of dimers 

[Dunmur DA, Luckhurst GR, de la Fuente MR, Diez S and Perez Jubindo MA. 

J.Chem.Phys. 2001;115, 8681 & Stocchero M, Ferrarini A, Moro GJ, Dunmur 

DA and Luckhurst GR. J.Chem.Phys. 2004;121, 8079].  

Keywords: liquid crystal dimers; twist-bend nematic phase; dielectric 

spectroscopy; conformation distribution;  

1. Introduction 

It is well-known how rod-shaped [1,2], disk-shaped [1,2,3] and bent-shaped molecules 

[4,5] induce their own hierarchy of mesophases with different symmetries. Although all 

these different structures can show a nematic phase, it is expected that the phase 

behaviour and properties will be greatly influenced by the details of the molecular 

structure. Of particular interest are liquid crystal dimers, for which the introduction of 

extra degrees of freedom to the molecular shape by the core flexible spacer has been 

demonstrated to have a strong impact on their phase behaviour and properties. 

Calamitic, discotic or bent-core mesogenic groups have been used among others as 
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building blocks for dimeric systems, connected by longitudinally or laterally by flexible 

linking groups of different types, length or parity, and revealing a highly interesting 

hierarchy of mesomorphic behaviour [6–13]. However, in the recent years the simplest 

calamitic-calamitic dimers have attracted considerable attention due to the discovery of 

a novel nematic phase, originally for cyanobiphenyl based odd dimers with methylene 

links ( ,  -bis(4,4’-cyanobiphenyl)-alkanes CBnCB). Depending on the chain parity, 

dimers adopt a preferred linear (even) or a bent (odd) averaged molecular shape, 

responsible for the pronounced odd-even effect observed on many of their properties, as 

for example, transitional entropies and temperatures [14–16], dielectric anisotropy 

values [17], elastic constants and flexoelectric coefficients [17–19]. In the  case of  the 

odd bent conformation, the molecular structure does not fit well to the nematic 

environment causing lower transition temperatures and entropy changes at the isotropic-

nematic transition [11,20]. However, of fundamental interest is the effect  molecular 

curvature exerts on the elastic properties of odd dimers, which causes an inversion of 

the ratio of the splay and bend elastic constants, with the latter taking remarkable low 

values and a decreasing tendency with increasing order parameter [18,19,21–25]. It 

seems that the ultimate consequence of this unique combination of molecular flexibility 

and bent molecular curvature is the appearance of an additional nematic mesophase, 

found at temperatures below the conventional nematic phase [23,26–29]. This novel 

nematic phase has been identified by a wide number of studies as the twist-bend 

nematic phase (NTB) initially predicted for bent-shaped molecules [30,31] and is 

characterized by a spontaneous twist-bend deformation of the nematic director. That is, 

a mesophase with only long-range orientational order where the director tilts and is 

arranged in a heliconical structure, characterized by a very short pitch of the order of 

nm [23,29,32] and a conglomerate of domains having doubly degenerate handedness. 
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A variety of molecular field theories have been developed [16,33–36], which 

include the flexibility of the spacer in the calculation of the conformer distribution and 

whose primary feature is the way the conformational state of the spacer is described. 

The Rotational Isomeric State (RIS) model [33] limits the torsional angles of the chain 

bonds to the three tetrahedral conformations, resulting in the two possible angles 

between the para axis of the mesogenic units for odd and even dimers which are 

depicted in Figure 1: for an odd dimer, the all-trans conformation that is bent and the 

cis conformation that forms a hairpin-shape, while for even dimers, the all-trans 

conformation is linear and the cis conformation is bent. Although the RIS model allows 

for a qualitative understanding of the odd-even effect mentioned previously, a realistic 

description of nematic phases of liquid crystal dimers should account for the flexibility 

of the spacer and include a wide range of conformations together with its temperature 

dependent distribution. Ferrarini et al. showed that a continuous distribution of torsional 

angles around the minima of RIS model [26,35,37] is necessary to  explain the 

behaviour of liquid crystal dimers, including their dielectric properties. For odd dimers 

and considering a nematic environment, the continuous torsional potential model (CTP) 

predicts a broad conformational distribution around RIS configurations dominated by 

bent conformers ( 120° for CBnCB), but with an appreciable contribution of hairpin 

molecular configurations ( 15° for CBnCB), and anticipates that the increase of 

orientational order of the para-axis of the mesogenic units is reflected by the 

stabilization of the extended bent conformers at the expense of the hairpin-shaped ones 

[19,26,38]. Moreover, the continuous torsional potential also predicts a small decrease 

of the molecular curvature of the bent conformers for higher order parameters in order 

to better accommodate to the nematic potential.  
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In addition to the spacer parity, the molecular curvature ‘fine-tuning’ effect of 

the nature of the linking chain should not be disregarded. In fact, while the odd CBnCB 

molecules constitute the archetypical example of materials exhibiting the NTB phase 

[22,26,27,29], ,  -bis(4,40-cyanobiphenyloxy)alkanes (CBOnOCB) compounds do 

not appear to satisfy the necessary conditions, such as the curvature, to avoid 

crystallization and to show the NTB phase [37]. However, the intense work in the field 

during the last few years revealed the occurrence of NTB phases for a variety of ether-

linked [24,39], hydrogen-bonded driven [40], imine-linked [28] odd dimers or non-

symmetric odd bimesogens containing chiral units [41,42]. 

In the case of dimers carrying dipole moments, any conformational change is 

reflected by the dielectric response, which is a measure of the mean-square dipole 

moment, understood as the averaged vector sum of the different molecular 

configurations. Thus, dielectric spectroscopy can reveal information about the 

temperature dependence of the conformational distribution as well as orientational 

order, which, as will be shown, is particularly the case for dimers with large 

longitudinal dipolar groups in the mesogenic units. Dielectric spectroscopy is also a 

powerful technique to gain insight into the rotational dynamics of the dipolar groups in 

different orienting environment conditions [43]. In this paper we aim to provide a 

comprehensive overview of the distinctive dielectric properties of nematic dimers, both 

for the conventional N and for the NTB phases. Accordingly, we will bring together and 

compare the most recent results for a number of dimers with different molecular 

structures in order to demonstrate the effect that chain length or molecular dipole 

distribution exert on the dielectric behaviour. This contribution will focus on dimers 

with positive dielectric anisotropy and large longitudinal dipole moments in the semi-

rigid mesogenic groups. Results will be complemented with additional analysis of the 
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dielectric and elastic properties of a binary mixture of CB7CB+CB9CB and, for the 

sake of comparison, with the comprehensive analysis of the dielectric properties of the 

nematic even dimer  -(2’,4-difluorobiphenyl-4’-yloxy)- -(4-cyanobiphenyl-4’-

yloxy)decane (FFO10OCB). Results will be discussed in the framework of Stocchero et 

al.’s theoretical model [38] for the dielectric relaxation of nematic dimers, which will be 

detailed in later sections. 

2. Results 

2.1 Materials and methods 

The materials considered in this contribution can be classified into two broad groups: 

symmetric and non-symmetric dimers. Among the former (case i), we will consider the 

cyanobiphenyl  based dimers CB9CB [44] and CB7CB [26], which constitute the most 

representative examples of liquid crystal dimers exhibiting the NTB phase.  The relative 

orientation of the dipole moments of each of the cyanobiphenyl units ( 4D) will 

determine the molecular net dipole moment. The schematic molecular structure, dipole 

distribution and mesomorphic behaviour of both materials is depicted in Figure 2 

[26,27,44–46]. In addition, a two component mixture of both symmetric materials 

(CB7CB+CB9CB with 0.46 mole fraction of CB9CB) will also be considered. The 

mixture was prepared in a sealed aluminium pan and ultrasonicated in the isotropic 

phase. The observed phase sequence is listed in Figure 2. 

On the other hand, two different situations can be recognised for non-symmetric 

dimers: case (ii) only one mesogenic unit has a dipole moment and case (iii) both semi-

rigid units carry dipole moments but of different magnitude. As an example of the latter, 

the ether-linked odd FFO9OCB [24] and even FFO10OCB dimers will be examined, for 

which the difluorobiphenyl unit has two identical dipole moments of about 1.5 D 
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associated with the C-F bonds, implying a net longitudinal contribution of about 2.25 D 

with respect to the para-axis of the mesogenic unit in comparison with the larger dipole 

(4 D) of the nitrile group. FFO10OCB was synthesised according to [24] and the 

liquid crystal phase behaviour has been characterized using modulated differential 

scanning calorimetry and polarized optical microscopy observations. The schematic 

molecular structures and mesomorphic behaviour of both materials are given in Figure 2 

[17,18,24]. Although only a nematic phase is observed for the even dimer, it has been 

shown that a monotropic twist-bend nematic phase can be obtained for FFO9OCB at 

very fast cooling rates. The latest results have shown that the NTB phase can be 

stabilized in binary mixtures with CB7CB [47], thus facilitating the study of simple, 

non-symmetric systems exhibiting a NTB phase [48]. 

Finally, as an illustrative example of case (ii), the behaviour of the family of  -

(4-cyanobiphenyl-4′-oxy)- -(1-pyreniminebenzylidene-4′-oxy)alkanes (CBOnO.Py) 

will be explored  [49–54]. As shown in Figure 2 these materials consist of two ether-

linked terminal groups of greatly different shapes and sizes. The smaller unit, a 

cyanobiphenyl, has a dipole moment associated with the nitrile group, while the larger 

unit only carries a very small transverse dipole moment (associated with the imine 

group) that can be disregarded. Extensive studies have been performed on this 

family[49–52,54] showing that, excluding the shortest member (n=3) with a monotropic 

nematic phase, the rest of the odd members (n=5-11) exhibit enantiotropic nematic 

behaviour. In addition CBO9O.Py, CBO7O.Py and CBO5O.Py show a SmA phase at 

lower temperatures. Figure 2 gives a schematic representation of the molecular 

structure, together with the phase sequence for the compounds with n=7 and n=5. 

Measurements of the static permittivity were performed in 8 m  thickness 

Instec cells with antiparallel planar rubbing using the Agilent Precision LRC meter 
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E4890A. The perpendicular ( ) and the parallel (
|| ) components with respect to the 

nematic director were obtained by using harmonic probe electric fields well below (0.5 

Vrms) and well above (19 Vrms) the threshold voltage of the Fréedericksz transition. 

Samples were held on a hot stage (TMSG-600) with a temperature controller (TMS-93), 

both from Linkam. The same setup was used to measure the splay and bend elastic 

constants by means of the capacitance method for CB7CB, CB9CB and their mixture 

discussed here. A detailed description of the procedure can be found elsewhere [44]. In 

order to characterize the dielectric spectra of a diversity of materials with very different 

behaviour our setup includes a number of impedance analyzers (AlphaA from 

Novocontrol, HP4192A,  HP4291A and HP4294), which allows for full adaptability to 

make measurements over the frequency range 
9210 1.8 10 Hz   . An adequate 

combination of analyzers was employed for each of the materials discussed here as 

detailed elsewhere [24,44,46,51,52]. In the case of FFO10OCB, HP4192A and 

HP4291A were used to measure the dielectric spectra presented in this paper. The 

accurate measurement of high frequency spectra requires the utilization of cells with 

untreated metal electrodes, which in our setup consists of a parallel plate capacitor made 

of two circular gold-plated brass electrodes with 5 mm diameter separated by 50 m  

thick silica spacers. Regardless of the analyzer, the sample is placed at the end of a 

coaxial line and a modified HP16091A coaxial test fixture was used as the sample 

holder. The system is held inside a Novocontrol cryostat, which screens it, and the 

dielectric measurements were performed on cooling with the different temperature steps 

being stabilized to 20 mK . In every case, the spectra has been analyzed for each 

temperature according to the Havriliak-Negami function through the empirical 

relationship, 
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where    is the extrapolated high frequency permittivity, dc   is the dc conductivity 

and the sum is extended over the different relaxation modes with strengths k . The 

relaxation time  is related to the frequency of maximum loss through the parameters      

and  , which describe the width and the asymmetry of the relaxation spectra, 

respectively ( 1    corresponds to a simple Debye-like process). 

2.2 Static permittivity 

2.2.1. Effect of dipolar structure.  

The comparison between the temperature dependence of the static dielectric permittivity 

for the three dimers CB9CB [44], FFO9OCB [24] and CBO7O.Py [52] yields an 

interesting overview of the contrasting dielectric behaviour exhibited by nematic dimers 

as a result of the different molecular structures. Permittivity data reduced by the 

permittivity value at the isotropic phase ( )iso NIT  is gathered and plotted in Figure 3 as a 

function of the shifted temperature (T T )NI  for the three compounds. One conclusion 

that can be drawn at first glance is: while the molecular structure does not greatly 

influence the temperature dependence of the perpendicular component of the 

permittivity (  ), the behaviour of the parallel component (
|| ) drastically depends on it. 

This directly reflects the fact that the different molecular dipolar configurations will 

dictate the mean square longitudinal dipole moment through the conformational 

distribution changes and so, will give rise to a wide diversity of behaviours. For 

CBOnO.Py-like structures (ii), conformational changes do not affect the mean averaged 

longitudinal dipole moment given just by the single nitrile group and accordingly, 
||  

Page 10 of 45

URL: http://mc.manuscriptcentral.com/tlct  Email: c.t.imrie@abdn.ac.uk

Liquid Crystals

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

behaves as typical liquid crystal monomers with positive dielectric anisotropy. In the 

contrasting case we find symmetric dimers like CB9CB, for which molecular 

conformational changes introduce a strong temperature variation of 
|| . Such variation 

results increasing difference between the extrapolated value at the isotropic phase and 

the mean permittivity value in the nematic phase, which indicates a strong reduction of 

the mean-square dipole moment as the temperature is lowered. Due to symmetry 

reasons, for odd dimers the bent molecular configurations (trans conformers) have no 

longitudinal dipole moment if the angle between the terminal dipoles is greater than 90° 

and their contribution to the orientational dielectric permittivity will be null. However, 

hairpin conformers with small interarm angles, for which both rigid units tend to align 

on average along the director, greatly contribute to the parallel component of the 

permittivity. Thus, the strong decrease of 
||  on reducing the temperature reflects the 

progressive increase of the population of the bent (trans) molecular conformers, which 

are accommodated better by the nematic potential. We recall here, that the permittivity 

increases at the onset of the nematic order, which is agreement with molecular 

calculations [38] and corresponds to an initial stabilization of the hairpin conformers at 

the isotropic to nematic transition. Another interesting observation for CB9CB is that 

through the nematic and twist-bend nematic phases the dielectric anisotropy 

continuously decreases from a relative high value to even small negative at 

temperatures far from the nematic-nematic transition. The picture is then completed 

with the behaviour of FFO9OCB (case iii). Although 
||  still decreases with the increase 

of the orientational order, as for the symmetric CB9CB, such decrease is much less 

pronounced. In this case the non-symmetry on the dipolar structure of both mesogenic 

units implies a non-zero longitudinal dipole component even for bent molecular 

configurations, which is responsible for the intermediate behaviour shown by this 
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nematic dimer.  

On the other hand, the behaviour of   is determined by the temperature 

dependence of the averaged transverse dipole moment, for which the differences 

between bent and hairpin conformers are more subtle and so, comparison of these three 

highly different materials is challenging. However, it is worth considering here the 

latest results for a series of binary mixtures of CB7CB and FFO9OCB [47,48]. The 

stabilization of the NTB phase even for low mole fractions CB7CB allowed for the 

observation of the behaviour of  at the N-NTB transition in the presence of a non-zero 

longitudinal dipole moment contribution. It has been shown that for the different 

mixtures with CB7CB mole fractions up to 0.82 there is a slight increase of    at the 

N-NTB transition which, as will be also discussed in the following sections, can be 

explained by the sudden contribution of the longitudinal dipole moment occurring at the 

onset of the heliconical tilt structure of the twist-bend nematic phase.  

2.2.2. Effect of chain length and parity.  

Figure 4.a collects the static permittivity data of CB7CB and CB9CB, together with that 

of their mixture with a mole fraction of CB9CB equal to 0.46. Although as expected the 

three samples show a similar behaviour, there is still an appreciable and interesting 

difference in their value. Comparing the two pure compounds, it is clearly observed that 

the longer CB9CB shows higher 
||  and lower  , resulting in larger anisotropy values 

for the same dipolar molecular structure. At the same time, the binary mixture shows an 

intermediate behaviour. These subtle differences can be tentatively explained in terms 

of the combined influence of two effects. First, it is expected that for longer chains both 

mesogenic units can behave more independently allowing for a slightly higher 

proportion of hairpin-shaped conformations with high longitudinal dipole moment. 
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Second, for longer chains the addition of small displacements in the torsional angles 

together with the strong preference for the semi-rigid units to tend to align with the 

director, promotes hairpin and bent conformational angles that adjust better to the 

nematic ordering and thus, an averaged lower transverse dipole moment [55]. 

Interestingly, the trend in the dielectric anisotropy is directly reproduced by the values 

of the splay and bend elastic constants as can be appreciated in Figure 4.b. The longer 

homologue presents larger values of 1K  and 3K  than those of CB7CB, while the values 

for the mixture fall between the two pure compounds. The small but somewhat larger 

increase of  3K  close to the I-N transition could be explained by the slightly larger 

population of hairpin conformers. On further cooling, 3K decreases and takes values as 

low as 0.4 pN close to the N-NTB transition for the three materials. Values reported here 

are in good agreement with those obtained by different experimental methods reported 

in literature [18,21,25].  

Finally, comparison of the dielectric behaviour for the two consecutive 

homologues  FFO9OCB [24] and FFO10OCB is shown in Figure 5. An opposite effect 

is clearly observed for these two consecutive odd and even dimers. Although having a 

longer chain, both reduced components of the permittivity of FFO10OCB are smaller. 

This results in a smaller anisotropy for the even dimer, with measured values of 2.7 for 

FFO10OCB and 3.2 for FFO9OCB at 10 °C  below the I-N transition, in good 

agreement with the trend reported for the homologues with n=5 to 12 [17].The 

difference in value of 
||  could be tentatively explained by the combined effect of a 

higher percentage of trans conformers for  the even dimer (as will be discussed in the 

next section) and of the comparable smaller mean averaged molecular dipole moment of 

the cis conformers for the even dimer with respect to the odd one (see Figure 2).  In 

addition the increase of the orientational order also entails a larger increase of the most 
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elongated conformers for FFO10OCB, but in this case with relative angles closer to 

180°. This implies a reduction of the averaged transverse dipole moment with respect to 

the odd dimers and, as can be observed in Figure 5, this is reflected by the lower   

values.  

2.3 Dielectric spectrum 

2.3.1 Molecular theory of dielectric relaxation in nematic dimers.  

As has been shown in the preceding section, equations for the static permittivity 

components obtained by Maier and Meier for rigid rod-shaped mesogenic molecules in 

a nematic potential [56] fail to describe completely the variety of behaviours that are 

observed for flexible dimers.  In addition, measurement of dielectric absorption curves 

of the non-symmetric dimer CB.O9O.10 [57] showed two well-defined Debye-like 

absorptions at frequencies characteristic for end-over-end relaxations instead of the 

single relaxation expected by Nordio-Rigatti-Segre (N-R-S) equations for dielectric 

relaxation in nematic liquid crystals composed of rigid rod-like molecules [58]. These 

findings motivated Stocchero et al. [38] to develop a theory for the dielectric relaxation 

of nematic dimers for which each of the mesogenic units is subjected to a nematic 

potential resulting in a four–state generalization of the Maier-Saupe potential [59,60]. 

The authors assumed a well defined time separation between chain dynamics and the 

reorientational relaxation processes and, due to the nature of the potential, state that 

orientational relaxation occurs via individual (note but not independent) end-over-end 

reorientation of the rigid units. It should be noted here, that flexible spacer imposes a 

correlation between both mesogenic units, accounted for by the equilibrium 

conformational distribution, which implies that the reorientaitons are considered to be 

individual but not independent. The flipping of the whole molecule at a time is excluded 
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because it corresponds to the passage over a large potential barrier. A schematic 

representation of the interconversion processes between the four stable predicted states 

is given in Figure 6. Relative reorientation rates C T

ik   and T C

ik   for each unit are 

determined by the rotational diffusion coefficients and the corresponding energy 

barriers, while relative equilibrium populations of the cis/trans states will dictate the 

relaxation strengths. It is expected that different dimeric structures will result in very 

different dielectric dispersion profiles with unique characteristics. The next sections 

present a summary of the particular cases applicable to the materials considered in this 

paper.   

2.3.2. Equivalent mesogenic units.  

For dimers composed of two identical mesogenic units with a non-zero longitudinal 

dipole moment, the kinetic model is simplified and the following monoexponential 

decay is predicted for the dipole correlation function in order to describe the low 

frequency dispersion of the parallel component of the permittivity [38] 

  
2

|| ||( ) 4 exp 2 ,eq C T

CC t P k t     (2) 

where 
||  is the average longitudinal dipole moment located in each of the rigid units 

and eq

CP  is the equilibrium population of the cis conformers. This correlation function 

implies an absorption profile characterized by a single relaxation process whose 

strength is determined by the population of cis conformers, i.e. hairpin conformers for 

odd dimers. Such prediction successfully interprets the dielectric parallel spectra 

reported for the nematic phases of CB9CB [44], CB7CB [26] or CBO11OCB [57] 

dimers, which show a low frequency relaxation mode ( 1||m ) whose strength diminishes 
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when lowering the temperature, or equivalently, decreases with increasing orientational 

order and decreasing population eq

CP . In all cases an additional higher frequency mode 

( 2||m ) is also detected  with smaller strength that can be associated with the fast 

equilibration precessional and orientational motions (around the molecular long axis) of 

the dipolar groups within the potential wells. The same dielectric modes are present for 

the perpendicular component of the permittivity, although in this case that at higher 

frequency ( 2m  ) dominates over the temperature range of the conventional nematic 

phase with just a small contribution from 1m  which can be attributed to a very low 

amount of director misalignment in the planar configuration. To illustrate this 

behaviour, Figure 7 recalls the frequency and temperature dependence of the dielectric 

losses of CB7CB for the homeotropic (Figure 7a) and planar (Figure 7b) director 

alignments [46]. 

Such plots illustrate several couple of remarkable observations that can be made 

regarding the behaviour of the dielectric properties at the N-NTB transition. 

Characteristic frequencies of the two modes experience only a slight change at the 

transition and their activation energies remain almost unaltered [44,46]. This absence of 

significant changes in the kinetic rates at the phase transition indicates that the 

difference between the nematic and twist-bend nematic molecular environment does not 

modify to any great extent the diffusion coefficients and the energy barriers for the 

reorientational motions of the semi-rigid units. Additionally, CB7CB case is a special 

case as it exhibits a glassy NTB phase which is easily accessible by slow cooling rates. It 

has been shown that, on approaching the glass transition temperature, both molecular 

motions become strongly cooperative changing in a concerted manner, both of them 

being responsible for a single glass transition temperature [46].  Finally, as can be seen 
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in Figure 7a, at the N-NTB transition there is a sudden increase of the strength of 1m  , 

that is, the emergence of the contribution of the averaged longitudinal dipole moment. 

This implies the appearance at the transition of a molecular tilt, which is consistent with 

the heliconical director distribution proposed for the NTB phase. Assuming that the order 

parameter change is small at the transition, so its effect can be neglected, and that the 

described increase of 
1,m   close to the N-NTB transition arises only due to the 

molecular director tilt, an estimation of the tilt angle can be calculated from the ratio 

between 
1,m  and 

1,||m  resulting in around 30° in the case of both, CB7CB and 

CB9CB [44]. Such estimated values are in the range of other reported values obtained 

with other techniques [61–64]. 

2.3.3. Non-equivalent mesogenic units.  

In the case of dimers composed of non-equivalent mesogenic units Stocchero et al.’s  

model predicts a richer hierarchy of dielectric absorption profiles with a more complex 

behaviour, which will ultimately depend on the relative strengths of the longitudinal 

dipole moments of the two terminal unit. When considering compounds for which only 

the mesogenic unit with the higher flipping rate has a longitudinal dipole moment (case 

ii: the highly non-symmetric CBOnO.Py dimers) and assuming a large value of the ratio 

between the rate coefficients for both rigid units, Stocchero et al’s model [38] yields the 

following correlation function for the low frequency dispersion of the parallel 

component of the permittivity 

  
22 2

|| || ||( ) exp( 2 ) 4 exp( 2 )eq eq eq eq

T C B T C ACN CN
C t P P k t P P k t        (3) 

where eq

CP and eq

TP are the relative equilibrium populations of the hairpin (cis) and bend 
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(trans) conformers at each temperature and Ak  and Bk are the effective rates of the 

flipping motions for the fast units and the slow units, respectively. Such a correlation 

function implies a low frequency dielectric spectrum dominated by two relaxations 

whose strengths will be determined by the conformational distribution: that of the fast 

relaxation will decrease with increasing order parameter, while that of the slow 

relaxation will increase. It is clear, that the combined intensity of both modes would 

remain constant as shown by the static behaviour described in the previous section. 

Both relaxation processes can be related to two kinetic processes: the high frequency 

mode involves the end-over-end rotation of the smaller group, while that at low 

frequencies implies the flip-flop motion of the larger pro-mesogenic unit, which 

although does not have a longitudinal dipole moment drives an immediate subsequent 

transition of the smaller rigid unit to restore the equilibrium population distribution.  

The adequacy and possibilities of the model have been discussed in detail for the 

odd CBOnO.Py (n=3-11) homologues [51,52]. In all cases the dielectric spectra was 

characterized by two low frequency Debye-like relaxations with correlated strengths 

( ||,1 Lm  and  ||,1 Hm ), as given by Equation 3, and completed by a slightly broader high 

frequency relaxation mode 2||m  whose strength decreases with temperature, which is 

attributed to the superposition of the rotation of the molecule around its long axis and 

the precessional motions of the rigid units. As an example, the strength and frequency 

of the relaxation processes for CBO5O.Py are given in Figure 8. As a result of the 

simplicity of the molecular dipole geometry and of the correlation function, the ratio of 

the strengths of both modes could be applied straightforwardly to estimate and compare 

the temperature dependence of the conformational distribution through Equation 3. 

Calculations of such conformational distributions for the CBOnO.Py homologues have 

shown that the population of bent conformers increases on lowering the temperature, 
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and have confirmed that the  shorter the spacer, the higher is the percentage of bend 

conformers immediately at the I-N transition [52]: around 77% for the longer 

CBO11O.Py and 93% for the shorter CBO3O.Py. In addition, such differences between 

the conformational distributions as a function of the spacer length give rise to the 

remarkable appearance of two isotropic relaxation processes associated with the 

longitudinal dipole moment for the shorter homologues. Both RIS and CTP agree that in 

contrast to what happens for even dimers, in the case of odd dimers the conformational 

distribution changes only slightly from the isotropic to the nematic phase. In this way, 

the lower frequency mode with strength proportional to eq

C

eq

T PP  can be distinguished 

even in the isotropic phase (
1,Lm ) for the shorter members (CBO5O.Py and 

CBO3O.Py), as shown in Figure 8 for CBO5O.Py [52]. Additionally, such dependence 

of the conformational distribution on the length of the linking spacer also influences the 

character of the N-I phase transition. It has been shown, that the shorter the flexible 

chain is, the weaker the first order transition is, pointing out that, molecular biaxiality 

has a greater impact than molecular flexibility when driving the first order transition to 

become weaker [54], as is also seen for more conventional dimers [37]. 

We can now consider the cases of FFO9OCB and FFO10OCB, with an 

approximate ratio of 1 to 1/2 for the longitudinal dipoles of the cyanobiphenyl and the 

difluorobiphenyl units, respectively. It has been shown for FFO9OCB  that irrespective 

of the smaller inequivalence in size of both rigid units, the flipping rates time separation 

is large enough to give a dielectric absorption profile characterized by two low 

frequency relaxation processes as in the preceding case [24]. Due to the higher 

transition temperatures, even dimers have usually been ignored for detailed property 

studies. An interesting way of demonstrating that the distinctive low frequency 

relaxation mode results from the relative freedom of the rigid units and not from any 
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effect that could be introduced by the bent molecular shape of odd dimers, is by 

comparing the spectrum of the two consecutive homologues FFO9OCB and 

FFO10OCB. Figure 9 shows the three-dimensional plot of the dielectric losses as a 

function of temperature and frequency for the even dimer in parallel director alignment, 

which was obtained by applying a bias electric field of 0.8 V/µm. At first glance, it can 

be seen that it is comparable to that of the odd dimer reported in [24], with two low 

frequency relaxation modes together with a third process at higher frequencies 2||m , and 

with lower strength that again can be attributed to fast equilibration modes due to the 

chain’s torsional dynamics. However, additional information can be obtained from a 

more detailed inspection. 

Stocchero et al.’s model has been adequately adapted to the present case by 

assuming || ||2
CN FF

   (detail of this can be found in [24]), obtaining the two 

exponential correlation function 

  
22 2

|| || ||

1
( ) 3 exp( 2 ) 4 exp( 2 )

4

eq eq eq eq

T C B C T ACN CN
C t P P k t P P k t       (4) 

where, again, Ak  and Bk are the effective rates of the flipping motions for the fast unit 

(with CN) and the slow unit (with FF), respectively. In a similar way to the preceding 

case, both exponential decays imply two relaxations in the dielectric absorption profile 

that can be associated with the flip-flop motions of the cyanobiphenyl unit at higher 

frequencies ( ||,1 Hm ) and the flip-flop motions of the difluorobiphenyl unit at lower rates 

( ||,1 Lm ). It becomes evident that, in contrast to Equation 3, the combined intensity of 

both contributions does not remain constant, but decreases with temperature as 

)249( eq

TP . As shown in the Figure 10, dielectric spectrum of FFO10OCB was fitted 

to Equation 1 taking into account three contributions: two Debye-like of lower 
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frequencies ( ||,1 Lm  and  ||,1 Hm ) and one Cole-Cole ( 0.82 1   ) mode at high 

frequencies ( 2||m ). The temperature dependence of the dielectric strengths of the parallel 

component, obtained by fitting to Equation 1, is shown in Figure 11 for both 

homologues. As can be observed, the changes in the conformational distribution 

determine the behaviour of ||,1 Lm and ||,1 Hm , reflecting the increase of trans 

conformer population (bent shape for odd dimers and linear for the even ones) by the 

dependencies  234/1 eq

C

eq

T PP   and eq

T

eq

C PP4 , respectively. However, a closer 

examination reveals a different behaviour close to the isotropic to nematic transition, 

evidencing dissimilar conformational distribution changes at the onset of the nematic 

ordering.  

The temperature dependence of the characteristic relaxation frequencies 

associated with each mode for both materials are given in Figure 12 as an Arrhenius 

plot. Calculated activation energies for the two low frequency relaxations associated 

with the end-over-end rotation of the mesogenic units are 100 kJ mol
-1

 ( ||,1 Lm ) and 63 kJ 

mol
-1

 ( ||,1 Hm ) for FFO10OCB and 90 kJ mol
-1

 ( ||,1 Lm ) and 65 kJ mol
-1

 ( ||,1 Hm ) for 

FFO9OCB [24]. The ratio of these two activation energies is about 0.6 and 0.7 for the 

even and odd dimers, respectively, a value to some extent lower than that found for 

CBOnO.Pys [52] and the non-symmetric dimer CBO9O.10 [57]. In any case, all of the 

activation energy values found for these dimers are in the same range as those observed 

for end-over-end reorientation in calamitic nematic phases [65]. Concerning the fast 

equilibration mode 2||m , the activation energy for both homologues is about 35 kJ mol
-1

, 

in the same range as found for CBOnO.Py dimers for the same relaxation process 

[51,52].   
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Most recent results have shown that the stability of the NTB phase can be 

enhanced in mixtures [21,47,66] and that such strategy is successful in achieving the 

modulated nematic phase at room temperature [21,67]. Thus, to conclude the overall 

picture of dielectric properties of nematic dimers, it would be interesting to recall the 

latest results for binary mixtures of FFO9OCB and CB7CB having different mole 

fractions [47] as the stabilization of the NTB phase allowed for the development of a 

thorough investigation of the dielectric properties of a system containing a non-

symmetric dimer and exhibiting the twist-bend nematic phase. The analysis of the 

results for the mixture with mole fraction of CB7CB equal to 0.48 [48] has shown that 

in mixtures containing a component with a non-symmetric dipolar distribution, the 

dielectric spectrum of both, the nematic and the twist-bend nematic phases, shows the 

two distinctive low frequency dielectric modes of the non-symmetric dimer and a 

strength ratio between the two modes reflecting the composition of the mixture. In the 

case studied, both modes can be labelled and associated to the same orientational 

relaxation process as in the pure FFO9OCB. As previously discussed for symmetric 

dimers, the frequencies of the three characteristic processes remain almost unaltered at 

the transition to the NTB phase and with practically no change in their activation 

energies.  

3. Summary 

The present paper provides a survey of the latest studies of the dielectric properties of 

liquid crystal dimers. As has been discussed, the dielectric behaviour is especially 

sensitive to molecular shape and flexibility, and liquid crystal dimers are  particularly 

good examples of this. It has been shown how, irrespectively of the molecular dipole 

geometry or the length and parity of the spacer, the dielectric permittivity reflects the 

temperature dependence of the conformational distribution, evidencing the increase of 
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the population of extended conformers (trans) with decreasing temperature.. In case of 

the CBnCB symmetric dimers the increase of trans conformers implies a continuous 

reduction of the molecular mean-square dipole moment with increasing orientational 

order, resulting in the steady decrease of the dielectric anisotropy value. Such decrease 

becomes more pronounced in the NTB phase where the director tilts and, for low enough 

temperatures, the dielectric anisotropy even becomes negative.  

With respect to the frequency dependence of the dielectric spectra, liquid crystal 

dimers are uniquely rich in the variety of different behaviours that can be obtained 

depending on the molecular structure. Certain non-symmetric dimers show a spectra 

exhibiting three distinctive processes, with the strengths of the two low frequency 

dielectric absorptions correlated and dependent on the conformational distribution. 

Estimation of the dependence of the conformational population on the length of the 

flexible chain shows that for a family of odd homologues, the proportion of bent 

conformers increases with decreasing spacer length. When flipping rates of both units 

are equivalent as for CBnCB dimers, a two peak profile is recovered for the dielectric 

spectra. Measurements show that the same molecular processes are obtained for both 

nematic phases. Regardless of the compound, the tilting of the director at the N- NTB 

transition results in a sudden increase of the contribution of the reorientation of the 

mesogenic units to the perpendicular component of the permittivity which can be 

unambiguously detected in the dielectric spectrum. One key observation is that the 

relaxation frequencies and their temperature dependence remain practically unchanged 

at the N-NTB transition. This highlights that, from the dielectric point of view, the 

nematic or twist-bend nematic molecular environment does not change significantly. To 

conclude, the latest results for the binary mixture of CB7CB and FFO9OCB illustrates 

the fact that when increasing the number of components in a dimeric mixture, the 
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dielectric behaviour correspondingly becomes more intricate and thus, by the 

convenient choice of components a wide diversity of dielectric properties can be 

tailored. 
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Figure 1: Energetically favoured molecular configuration for  even and odd dimers 

within the RIS model having a tetrahedral geometry: trans configuration (left) and cis 

configuration (right). 

Figure 2: Chemical structures and transition temperatures as found from dielectric 

measurements performed on cooling for the main materials that are considered in the 

present review. 

Figure 3. The temperature dependence of the static permittivity reduced by the 

permittivity value at the isotropic phase ( )iso NIT   () CBO7O.Py, () FFO9OCB and 

(○) CB9CB.  Dashed lines indicate the N-NTB transition for CB9CB.  

Figure 4. a) The dependence on the shifted temperature of the tatic permittivity reduced 

by the permittivity value at the isotropic phase ( )iso NIT . Dashed lines indicate the N-

NTB transition. b) The dependence on the shifted temperature of the splay (full symbols) 

and bend (empty symbols) elastic constants in the nematic phase. (○) CB9CB, () 

CB7CB and () the mixture CB7CB + CB9CB (0.46). 

Figure 5. The dependence on the shifted temperature of the static permittivity reduced 

by the permittivity value at the isotropic phase ( )iso NIT  for () FFO9OCB and () 

FFO10OCB. 

Figure 6. Schematic representation of Stocchero et al.’s [38] four-state model for the 

reorientation dynamics of a dimeric mesogen subject to a nematic potential. Terminal 

rigid groups can be equal or different, polar or non-polar. States a and d correspond to 

trans configuration, while c and b are the cis conformers. 

Figure 7. (Coluor online) CB7CB. Three-dimensional plot of the dielectric losses vs the 

temperature and the logarithm of the frequency for the a) homeotropic and b) parallel 

alignments of CB7CB [46]. 

Figure 8. (Color online) a) Dielectric strength of the relaxation modes vs. temperature 

for CBO5O.Py. b) Arrhenius plot of the characteristic relaxation frequencies. 

() 1, ||Lm () ||,1 Hm ()  2||m  ,  (○) 1Hm and () 1Lm . [52] 
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Figure 9. (Colour online) Frequency and temperature dependence of the parallel 

dielectric losses of FFO10OCB. Dashed lines are given as guides to the eye. 

Figure 10. (Colour online). Frequency dependence of the real (full symbols) and 

imaginary (empty symbols) dielectric permittivity of FFO10OCB in the nematic phase 

(T=120 ºC). Solid lines are the resulting fit to Equation (1) and the corresponding 

deconvolution into the elementary processes. Although the direct current conductivity is 

considered in the fit,  for simplicity its contribution in not drawn. 

Figure 11. (Colour online) Dielectric strength of the relaxation modes vs. the shifted 

temperature for FFO10OCB (full symbols) and FFO9OCB (empty symbols): () ||,1 Lm  

(■) ||,1 Hm  () 2||m   and (○●) 1m . 

Figure 12. (Colour online) Arrhenius plot of the frequencies of the relaxation modes for 

FFO10OCB (full symbols) and FFO9OCB  (empty symbols): () ||,1 Lm  (■) ||,1 Hm  

() 2||m  and (○●) 1m . 
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Figure 1: Energetically favoured molecular configuration for  even and odd dimers within the RIS model 
having a tetrahedral geometry: trans configuration (left) and cis configuration (right).  
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Figure 2: Chemical structures and transition temperatures as found from dielectric measurements performed 
on cooling for the main materials that are considered in the present review.  
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Figure 3. The temperature dependence of the static permittivity reduced by the permittivity value at the 
isotropic phase εiso(T)NI (diamonds) CBO7O.Py, (triangles) FFO9OCB and (circles) CB9CB.  Dashed lines 

indicate the N-NTB transition for CB9CB.  
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Figure 4. a) The dependence on the shifted temperature of the tatic permittivity reduced by the permittivity 
value at the isotropic phase εiso(TNI). Dashed lines indicate the N-NTB transition. (circles) CB9CB, (triangles) 

CB7CB and (squares) the mixture CB7CB + CB9CB (0.46).  
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Figure 4. b) The dependence on the shifted temperature of the splay (full symbols) and bend (empty 
symbols) elastic constants in the nematic phase. (circles) CB9CB, (triangles) CB7CB and (squares) the 

mixture CB7CB + CB9CB (0.46).  
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Figure 5. The dependence on the shifted temperature of the static permittivity reduced by the permittivity 
value at the isotropic phase εiso(TNI)  for (triangles) FFO9OCB and (squares) FFO10OCB.  
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Figure 6. Schematic representation of Stocchero et al.’s [38] four-state model for the reorientation dynamics 
of a dimeric mesogen subject to a nematic potential. Terminal rigid groups can be equal or different, polar 

or non-polar. States a and d correspond to trans configuration, while c and b are the cis conformers.  
97x87mm (300 x 300 DPI)  
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Figure 7. (Coluor online) CB7CB. Three-dimensional plot of the dielectric losses vs the temperature and the 
logarithm of the frequency for the a) homeotropic and b) parallel alignments of CB7CB [46].  
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Figure 8. (Color online) a) Dielectric strength of the relaxation modes vs. temperature for CBO5O.Py. 
(diamonds) m1,L||, (squares) m1,H||, (up-triangles) m2||, (circles) m1H and (down-triangles)  m1L. [52]  

120x90mm (300 x 300 DPI)  

 

 

Page 40 of 45

URL: http://mc.manuscriptcentral.com/tlct  Email: c.t.imrie@abdn.ac.uk

Liquid Crystals

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

  

 

 

Figure 8. (Color online) b) Arrhenius plot of the characteristic relaxation frequencies for CBO5O.Py. 
(diamonds) m1,L||, (squares) m1,H||, (up-triangles) m2||, (circles) m1H and (down-triangles)  m1L.  [52]  

120x90mm (300 x 300 DPI)  
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Figure 9. (Colour online) Frequency and temperature dependence of the parallel dielectric losses of 
FFO10OCB. Dashed lines are given as guides to the eye.  
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Figure 10. (Colour online). Frequency dependence of the real (full symbols) and imaginary (empty symbols) 
dielectric permittivity of FFO10OCB in the nematic phase (T=120 ºC). Solid lines are the resulting fit to 
Equation (1) and the corresponding deconvolution into the elementary processes. Although the direct 

current conductivity is considered in the fit,  for simplicity its contribution in not drawn.  
120x90mm (300 x 300 DPI)  
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Figure 11. (Colour online) Dielectric strength of the relaxation modes vs. the shifted temperature for 
FFO10OCB (full symbols) and FFO9OCB (empty symbols): (diamonds) m1,L||, (squares) m1,H||, (triangles) 

m2|| and (circles) m1.  
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Figure 12. (Colour online) Arrhenius plot of the frequencies of the relaxation modes for FFO10OCB (full 
symbols) and FFO9OCB  (empty symbols): (diamonds) m1,L||, (squares) m1,H||, (triangles) m2|| and (circles) 

m1.  
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