98 research outputs found

    Bioprospecting antimicrobials from lactiplantibacillus plantarum: Key factors underlying its probiotic action

    Get PDF
    Lactiplantibacillus plantarum (L. plantarum) is a well‐studied and versatile species of lactobacilli. It is found in several niches, including human mucosal surfaces, and it is largely employed in the food industry and boasts a millenary tradition of safe use, sharing a long‐lasting relationship with humans. L. plantarum is generally recognised as safe and exhibits a strong probiotic character, so that several strains are commercialised as health‐promoting supplements and functional food products. For these reasons, L. plantarum represents a valuable model to gain insight into the nature and mechanisms of antimicrobials as key factors underlying the probiotic action of health‐promoting microbes. Probiotic antimicrobials can inhibit the growth of pathogens in the gut ensuring the intestinal homeostasis and contributing to the host health. Furthermore, they may be attractive alternatives to conventional antibiotics, holding potential in several biomedical applications. The aim of this review is to investigate the most relevant papers published in the last ten years, bioprospecting the antimicrobial activity of characterised probiotic L. plantarum strains. Specifically, it focuses on the different chemical nature, the action spectra and the mechanisms underlying the bioactivity of their antibacterial and antiviral agents. Emerging trends in postbiotics, some in vivo applications of L. plantarum antimicrobials, including strengths and limitations of their therapeutic potential, are addressed and discussed

    Partial Purification and Characterization of the Mode of Action of Enterocin S37: A Bacteriocin Produced by Enterococcus faecalis S37 Isolated from Poultry Feces

    Get PDF
    The aim of this research was to purify and characterize the mode of action of enterocin S37, a bacteriocin produced by Enterococcus faecalis S37, a strain recently isolated from the chicken feces. Enterocin S37 has a molecular weight comprised between 4 and 5 kDa. It remained active after 1 h at 80oC and at pH values ranging from 4.0 to 9.0. Furthermore, cell-free supernatant of Enterococcus faecalis S37 and purified enterocin S37 were active against Gram-positive bacteria including Listeria monocytogenes EGDe, L. innocua F, Enterococcus faecalis JH2-2, and Lactobacillus brevis F145. The purification of enterocin S37 was performed by ammonium sulfate precipitation followed up by hydrophobic-interaction chromatography procedures. Treatment of enterocin S37 with proteinase K, α-chymotrypsin, and papain confirmed its proteinaceous nature, while its treatment with lysozyme and lipase resulted in no alteration of activity. Enterocin S37 is hydrophobic, anti-Listeria and likely acting by depletion of intracellular K+ ions upon action on KATP channels. This study contributed to gain more insights into the mode of action of enterocins

    Polynucleotide phosphorylase is involved in the control of lipopeptide fengycin production in Bacillus subtilis

    Full text link
    Bacillus subtilis is a wealth source of lipopeptide molecules such as iturins, surfactins and fengycins or plipastatins endowed with a range of biological activities. These molecules, designated secondary metabolites, are synthesized via non-ribosomal peptides synthesis (NRPS) machinery and are most often subjected to a complex regulation with involvement of several regulatory factors. To gain novel insights on mechanism regulating fengycin production, we investigated the effect of the fascinating polynucleotide phosphorylase (PNPase), as well as the effect of lipopeptide surfactin. Compared to the wild type, the production of fengycin in the mutant strains B. subtilis BBG235 and BBG236 altered for PNPase has not only decreased to about 70 and 40%, respectively, but also hampered its antifungal activity towards the plant pathogen Botrytis cinerea. On the other hand, mutant strains BBG231 (srfAA−) and BBG232 (srfAC−) displayed different levels of fengycin production. BBG231 had registered an important decrease in fengycin production, comparable to that observed for BBG235 or BBG236. This study permitted to establish that the products of pnpA gene (PNPase), and srfAA− (surfactin synthetase) are involved in fengycin production. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature

    Interactions between Kluyveromyces marxianus from cheese origin and the intestinal symbiont Bacteroides thetaiotaomicron: Impressive antioxidative effects

    Full text link
    The effects of yeast Kluyveromyces marxianus S-2-05, of cheese origin, were assessed on the intestine anaerobe symbiont Bacteroides thetaiotaomicron ATCC 29741 to unveil any changes in its antioxidant properties. To this end, these microorganisms were grown and incubated either separately, or co-incubated, under anaerobic atmosphere. Afterwards, the microbial cells were recovered and washed, and extracts were prepared using a sterile detergent solution to mimic the intestine detergent content. The extracts prepared from K. marxianus S-2-05 and reference strain K. marxianus MUCL 29917, grown under different conditions, were assessed for their antioxidant properties against superoxide anion and hydrogen peroxide. Extracts from both yeasts showed antioxidative effects, which were particularly important for K. marxianus S-02-5 after anaerobic incubation. Moreover, K. marxianus S-02-5 displayed a high level of activity against the aforementioned reactive oxygen species, enhancing that of B. thetaiotaomicron ATCC 29741, after the co-incubation process. Two-dimensional polyacrylamide gel electrophoresis was used to separate the proteins extracted. Superoxide dismutase, thiol peroxidase, rubrerythrin -intensively produced by B. thetaiotaomicron induced by the yeast-were identified by mass spectrometry. The antioxidative potential evidenced for K. marxianus S-02-5 is another advantage which could justify the utilization of this strain as a probiotic for countering intestinal inflammatory processes. © 2017 Elsevier Lt

    Adaptative Potential of the Lactococcus Lactis IL594 Strain Encoded in Its 7 Plasmids

    Get PDF
    The extrachromosomal gene pool plays a significant role both in evolution and in the environmental adaptation of bacteria. The L. lactis subsp. lactis IL594 strain contains seven plasmids, named pIL1 to pIL7, and is the parental strain of the plasmid-free L. lactis IL1403, which is one of the best characterized lactococcal strains of LAB. Complete nucleotide sequences of pIL1 (6,382 bp), pIL2 (8,277 bp), pIL3 (19,244 bp), pIL4 (48,979), pIL5 (23,395), pIL6 (28,435 bp) and pIL7 (28,546) were established and deposited in the generally accessible database (GeneBank). Nine highly homologous repB-containing replicons, belonging to the lactococcal theta-type replicons, have been identified on the seven plasmids. Moreover, a putative region involved in conjugative plasmid mobilization was found on four plasmids, through identification of the presence of mob genes and/or oriT sequences. Detailed bioinformatic analysis of the plasmid nucleotide sequences provided new insight into the repertoire of plasmid-encoded functions in L. lactis, and indicated that plasmid genes from IL594 strain can be important for L. lactis adaptation to specific environmental conditions (e.g. genes coding for proteins involved in DNA repair or cold shock response) as well as for technological processes (e.g. genes encoding citrate and lactose utilization, oligopeptide transport, restriction-modification system). Moreover, global gene analysis indicated cooperation between plasmid- and chromosome-encoded metabolic pathways

    Global Transcriptional Analysis of Spontaneous Sakacin P-Resistant Mutant Strains of Listeria monocytogenes during Growth on Different Sugars

    Get PDF
    Subclass IIa bacteriocins have strong antilisterial activity and can control the growth of Listeria monocytogenes in food. However, L. monocytogenes may develop resistance towards such bacteriocins. In this follow-up study, the transcriptomes of a high level (L502-1) and a low level (L502-6) spontaneous sakacin P-resistant mutant strain of L. monocytogenes were compared to the wild-type (L502). The growth of the resistant strains was reduced on mannose but not affected on cellobiose and the transcriptomics was performed during growth on these sugars. The mannose phosphotransferase system (PTS) encoded by the mptACD operon (mpt) is known for transporting mannose and also act as a receptor to class IIa bacteriocins. The mpt was repressed in L502-1 and this is in accordance with abolition of the bacteriocin receptor with resistance to class IIa bacteriocins. In contrast, the mpt was induced in L502-6. Despite the induction of the mpt, L502-6 showed 1,000 times more resistance phenotype and reduced growth on mannose suggesting the mannose-PTS may not be functional in L502-6. The microarray data suggests the presence of other transcriptional responses that may be linked to the sakacin P resistance phenotype particularly in L502-6. Most of commonly regulated genes encode proteins involved in transport and energy metabolism. The resistant strains displayed shift in general carbon catabolite control possibly mediated by the mpt. Our data suggest that the resistant strains may have a reduced virulence potential. Growth sugar- and mutant-specific responses were also revealed. The two resistant strains also displayed difference in stability of the sakacin P resistance phenotype, growth in the presence of both the lytic bacteriophage P100 and activated charcoal. Taken together, the present study showed that a single time exposure to the class IIa bacteriocin sakacin P may elicit contrasting phenotypic and transcriptome responses in L. monocytogenes possibly through regulation of the mpt

    The katG mRNA of Mycobacterium tuberculosis and Mycobacterium smegmatis is processed at its 5' end and is stabilized by both a polypurine sequence and translation initiation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In <it>Mycobacterium tuberculosis </it>and in <it>Mycobacterium smegmatis </it>the <it>furA</it>-<it>katG </it>loci, encoding the FurA regulatory protein and the KatG catalase-peroxidase, are highly conserved. In <it>M. tuberculosis furA-katG </it>constitute a single operon, whereas in <it>M. smegmatis </it>a single mRNA covering both genes could not be found. In both species, specific 5' ends have been identified: the first one, located upstream of the <it>furA </it>gene, corresponds to transcription initiation from the <it>furA </it>promoter; the second one is the <it>katG </it>mRNA 5' end, located in the terminal part of <it>furA</it>.</p> <p>Results</p> <p>In this work we demonstrate by in vitro transcription and by RNA polymerase Chromatin immunoprecipitation that no promoter is present in the <it>M. smegmatis </it>region covering the latter 5' end, suggesting that it is produced by specific processing of longer transcripts. Several DNA fragments of <it>M. tuberculosis </it>and <it>M. smegmatis </it>were inserted in a plasmid between the <it>sigA </it>promoter and the <it>lacZ </it>reporter gene, and expression of the reporter gene was measured. A polypurine sequence, located four bp upstream of the <it>katG </it>translation start codon, increased beta-galactosidase activity and stabilized the <it>lacZ </it>transcript. Mutagenesis of this sequence led to destabilization of the mRNA. Analysis of constructs, in which the polypurine sequence of <it>M. smegmatis </it>was followed by an increasing number of <it>katG </it>codons, demonstrated that mRNA stability requires translation of at least 20 amino acids. In order to define the requirements for the 5' processing of the <it>katG </it>transcript, we created several mutations in this region and analyzed the 5' ends of the transcripts: the distance from the polypurine sequence does not seem to influence the processing, neither the sequence around the cutting point. Only mutations which create a double stranded region around the processing site prevented RNA processing.</p> <p>Conclusion</p> <p>This is the first reported case in mycobacteria, in which both a polypurine sequence and translation initiation are shown to contribute to mRNA stability. The <it>furA-katG </it>mRNA is transcribed from the <it>furA </it>promoter and immediately processed; this processing is prevented by a double stranded RNA at the cutting site, suggesting that the endoribonuclease responsible for the cleavage cuts single stranded RNA.</p

    Structure and Mode-of-Action of the Two-Peptide (Class-IIb) Bacteriocins

    Get PDF
    This review focuses on the structure and mode-of-action of the two-peptide (class-IIb) bacteriocins that consist of two different peptides whose genes are next to each other in the same operon. Optimal antibacterial activity requires the presence of both peptides in about equal amounts. The two peptides are synthesized as preforms that contain a 15–30 residue double-glycine-type N-terminal leader sequence that is cleaved off at the C-terminal side of two glycine residues by a dedicated ABC-transporter that concomitantly transfers the bacteriocin peptides across cell membranes. Two-peptide bacteriocins render the membrane of sensitive bacteria permeable to a selected group of ions, indicating that the bacteriocins form or induce the formation of pores that display specificity with respect to the transport of molecules. Based on structure–function studies, it has been proposed that the two peptides of two-peptide bacteriocins form a membrane-penetrating helix–helix structure involving helix–helix-interacting GxxxG-motifs that are present in all characterized two-peptide bacteriocins. It has also been suggested that the membrane-penetrating helix–helix structure interacts with an integrated membrane protein, thereby triggering a conformational alteration in the protein, which in turn causes membrane-leakage. This proposed mode-of-action is similar to the mode-of-action of the pediocin-like (class-IIa) bacteriocins and lactococcin A (a class-IId bacteriocin), which bind to a membrane-embedded part of the mannose phosphotransferase permease in a manner that causes membrane-leakage and cell death

    CitAB Two-Component System-Regulated Citrate Utilization Contributes to Vibrio cholerae

    No full text
    corecore