2,445 research outputs found
Vertex Fault Tolerant Additive Spanners
A {\em fault-tolerant} structure for a network is required to continue
functioning following the failure of some of the network's edges or vertices.
In this paper, we address the problem of designing a {\em fault-tolerant}
additive spanner, namely, a subgraph of the network such that
subsequent to the failure of a single vertex, the surviving part of still
contains an \emph{additive} spanner for (the surviving part of) , satisfying
for every
. Recently, the problem of constructing fault-tolerant additive
spanners resilient to the failure of up to \emph{edges} has been considered
by Braunschvig et. al. The problem of handling \emph{vertex} failures was left
open therein. In this paper we develop new techniques for constructing additive
FT-spanners overcoming the failure of a single vertex in the graph. Our first
result is an FT-spanner with additive stretch and
edges. Our second result is an FT-spanner with additive stretch and
edges. The construction algorithm consists of two main
components: (a) constructing an FT-clustering graph and (b) applying a modified
path-buying procedure suitably adopted to failure prone settings. Finally, we
also describe two constructions for {\em fault-tolerant multi-source additive
spanners}, aiming to guarantee a bounded additive stretch following a vertex
failure, for every pair of vertices in for a given subset of
sources . The additive stretch bounds of our constructions are 4
and 8 (using a different number of edges)
Stability of Relativistic Matter with Magnetic Fields for Nuclear Charges up to the Critical Value
We give a proof of stability of relativistic matter with magnetic fields all
the way up to the critical value of the nuclear charge .Comment: LaTeX2e, 12 page
Push-Pull Block Puzzles are Hard
This paper proves that push-pull block puzzles in 3D are PSPACE-complete to
solve, and push-pull block puzzles in 2D with thin walls are NP-hard to solve,
settling an open question by Zubaran and Ritt. Push-pull block puzzles are a
type of recreational motion planning problem, similar to Sokoban, that involve
moving a `robot' on a square grid with obstacles. The obstacles
cannot be traversed by the robot, but some can be pushed and pulled by the
robot into adjacent squares. Thin walls prevent movement between two adjacent
squares. This work follows in a long line of algorithms and complexity work on
similar problems. The 2D push-pull block puzzle shows up in the video games
Pukoban as well as The Legend of Zelda: A Link to the Past, giving another
proof of hardness for the latter. This variant of block-pushing puzzles is of
particular interest because of its connections to reversibility, since any
action (e.g., push or pull) can be inverted by another valid action (e.g., pull
or push).Comment: Full version of CIAC 2017 paper. 17 page
Reshocked Richtmyer-Meshkov instability: Numerical study and modeling of random multi-mode experiments
Minimum and maximum against k lies
A neat 1972 result of Pohl asserts that [3n/2]-2 comparisons are sufficient,
and also necessary in the worst case, for finding both the minimum and the
maximum of an n-element totally ordered set. The set is accessed via an oracle
for pairwise comparisons. More recently, the problem has been studied in the
context of the Renyi-Ulam liar games, where the oracle may give up to k false
answers. For large k, an upper bound due to Aigner shows that (k+O(\sqrt{k}))n
comparisons suffice. We improve on this by providing an algorithm with at most
(k+1+C)n+O(k^3) comparisons for some constant C. The known lower bounds are of
the form (k+1+c_k)n-D, for some constant D, where c_0=0.5, c_1=23/32=0.71875,
and c_k=\Omega(2^{-5k/4}) as k goes to infinity.Comment: 11 pages, 3 figure
Multi-Choice Minority Game
The generalization of the problem of adaptive competition, known as the
minority game, to the case of possible choices for each player is
addressed, and applied to a system of interacting perceptrons with input and
output units of the type of -states Potts-spins. An optimal solution of this
minority game as well as the dynamic evolution of the adaptive strategies of
the players are solved analytically for a general and compared with
numerical simulations.Comment: 5 pages, 2 figures, reorganized and clarifie
The dynamics of proving uncolourability of large random graphs I. Symmetric Colouring Heuristic
We study the dynamics of a backtracking procedure capable of proving
uncolourability of graphs, and calculate its average running time T for sparse
random graphs, as a function of the average degree c and the number of vertices
N. The analysis is carried out by mapping the history of the search process
onto an out-of-equilibrium (multi-dimensional) surface growth problem. The
growth exponent of the average running time is quantitatively predicted, in
agreement with simulations.Comment: 5 figure
Local Guarantees in Graph Cuts and Clustering
Correlation Clustering is an elegant model that captures fundamental graph
cut problems such as Min Cut, Multiway Cut, and Multicut, extensively
studied in combinatorial optimization. Here, we are given a graph with edges
labeled or and the goal is to produce a clustering that agrees with the
labels as much as possible: edges within clusters and edges across
clusters. The classical approach towards Correlation Clustering (and other
graph cut problems) is to optimize a global objective. We depart from this and
study local objectives: minimizing the maximum number of disagreements for
edges incident on a single node, and the analogous max min agreements
objective. This naturally gives rise to a family of basic min-max graph cut
problems. A prototypical representative is Min Max Cut: find an cut
minimizing the largest number of cut edges incident on any node. We present the
following results: an -approximation for the problem of
minimizing the maximum total weight of disagreement edges incident on any node
(thus providing the first known approximation for the above family of min-max
graph cut problems), a remarkably simple -approximation for minimizing
local disagreements in complete graphs (improving upon the previous best known
approximation of ), and a -approximation for
maximizing the minimum total weight of agreement edges incident on any node,
hence improving upon the -approximation that follows from
the study of approximate pure Nash equilibria in cut and party affiliation
games
Multi-Player and Multi-Choice Quantum Game
We investigate a multi-player and multi-choice quantum game. We start from
two-player and two-choice game and the result is better than its classical
version. Then we extend it to N-player and N-choice cases. In the quantum
domain, we provide a strategy with which players can always avoid the worst
outcome. Also, by changing the value of the parameter of the initial state, the
probabilities for players to obtain the best payoff will be much higher that in
its classical version.Comment: 4 pages, 1 figur
Fast approximation of centrality and distances in hyperbolic graphs
We show that the eccentricities (and thus the centrality indices) of all
vertices of a -hyperbolic graph can be computed in linear
time with an additive one-sided error of at most , i.e., after a
linear time preprocessing, for every vertex of one can compute in
time an estimate of its eccentricity such that
for a small constant . We
prove that every -hyperbolic graph has a shortest path tree,
constructible in linear time, such that for every vertex of ,
. These results are based on an
interesting monotonicity property of the eccentricity function of hyperbolic
graphs: the closer a vertex is to the center of , the smaller its
eccentricity is. We also show that the distance matrix of with an additive
one-sided error of at most can be computed in
time, where is a small constant. Recent empirical studies show that
many real-world graphs (including Internet application networks, web networks,
collaboration networks, social networks, biological networks, and others) have
small hyperbolicity. So, we analyze the performance of our algorithms for
approximating centrality and distance matrix on a number of real-world
networks. Our experimental results show that the obtained estimates are even
better than the theoretical bounds.Comment: arXiv admin note: text overlap with arXiv:1506.01799 by other author
- …
