221 research outputs found

    Signatures of four-particle correlations associated with exciton-carrier interactions in coherent spectroscopy on bulk GaAs

    Get PDF
    Transient four-wave mixing studies of bulk GaAs under conditions of broad bandwidth excitation of primarily interband transitions have enabled four-particle correlations tied to degenerate (exciton-exciton) and nondegenerate (exciton-carrier) interactions to be studied. Real two-dimensional Fourier-transform spectroscopy (2DFTS) spectra reveal a complex response at the heavy-hole exciton emission energy that varies with the absorption energy, ranging from dispersive on the diagonal, through absorptive for low-energy interband transitions to dispersive with the opposite sign for interband transitions high above band gap. Simulations using a multilevel model augmented by many-body effects provide excellent agreement with the 2DFTS experiments and indicate that excitation-induced dephasing (EID) and excitation-induced shift (EIS) affect degenerate and nondegenerate interactions equivalently, with stronger exciton-carrier coupling relative to exciton-exciton coupling by approximately an order of magnitude. These simulations also indicate that EID effects are three times stronger than EIS in contributing to the coherent response of the semiconductor

    Optical studies of carrier and phonon dynamics in Ga_{1-x}Mn_{x}As

    Full text link
    We present a time-resolved optical study of the dynamics of carriers and phonons in Ga_{1-x}Mn_{x}As layers for a series of Mn and hole concentrations. While band filling is the dominant effect in transient optical absorption in low-temperature-grown (LT) GaAs, band gap renormalization effects become important with increasing Mn concentration in Ga_{1-x}Mn_{x}As, as inferred from the sign of the absorption change. We also report direct observation on lattice vibrations in Ga1-xMnxAs layers via reflective electro-optic sampling technique. The data show increasingly fast dephasing of LO phonon oscillations for samples with increasing Mn and hole concentration, which can be understood in term of phonon scattering by the holes.Comment: 13 pages, 3 figures replaced Fig.1 after finding a mistake in previous versio

    Origin of Magnetic Circular Dichroism in GaMnAs: Giant Zeeman Splitting versus Spin Dependent Density of States

    Full text link
    We present a unified interpretation of experimentally observed magnetic circular dichroism (MCD) in the ferromagnetic semiconductor (Ga,Mn)As, based on theoretical arguments, which demonstrates that MCD in this material arises primarily from a difference in the density of spin-up and spin-down states in the valence band brought about by the presence of the Mn impurity band, rather than being primarily due to the Zeeman splitting of electronic states.Comment: 4+ pages, 4 figure

    Intensive care nurse managers' experiences during the first wave of the Covid-19 pandemic: Implications for future epidemiological crises

    Get PDF
    BACKGROUND: Nurse managers play an important role in coordinating the multidisciplinary teamwork, which is specifically important in emergency and crises situations like the COVID-19 pandemic. The aim of this qualitative study is twofold: (1) to explore the experiences of the Intensive care units (ICU) nurse managers regarding their work during the first wave of the COVID-19 pandemic, and (2) to analyse what implications might be provided based on experiences of nurse managers for future possible epidemiological crises. METHODS: In-depth phone interviews were conducted to explore the experiences of ward managers-nurses (n = 15) working in different hospitals across Poland. Interviews were taped and transcribed verbatim, and then qualitatively analysed. RESULTS: Three main categories were identified: (1) Challenge of working with the unknown, (2) Nurse managers' expectations, and (3) Methods of coping and received support. The COVID-19 pandemic strongly affected the work of ICU nurse managers and uncovered the malfunctioning of the healthcare system. CONCLUSION: It is important to improve the knowledge and competence of hospital management personnel through exercises and in-service training on how to handle emergencies in order to improve the management of healthcare facilities, increase the safety of patients and employees, and the quality of healthcare

    Spin Dynamics and Spin Transport

    Full text link
    Spin-orbit (SO) interaction critically influences electron spin dynamics and spin transport in bulk semiconductors and semiconductor microstructures. This interaction couples electron spin to dc and ac electric fields. Spin coupling to ac electric fields allows efficient spin manipulating by the electric component of electromagnetic field through the electric dipole spin resonance (EDSR) mechanism. Usually, it is much more efficient than the magnetic manipulation due to a larger coupling constant and the easier access to spins at a nanometer scale. The dependence of the EDSR intensity on the magnetic field direction allows measuring the relative strengths of the competing SO coupling mechanisms in quantum wells. Spin coupling to an in-plane electric field is much stronger than to a perpendicular field. Because electron bands in microstructures are spin split by SO interaction, electron spin is not conserved and spin transport in them is controlled by a number of competing parameters, hence, it is rather nontrivial. The relation between spin transport, spin currents, and spin populations is critically discussed. Importance of transients and sharp gradients for generating spin magnetization by electric fields and for ballistic spin transport is clarified.Comment: Invited talk at the 3rd Intern. Conf. on Physics and Applications of Spin-Related Phenomena in Semiconductors, Santa Barbara (CA), July 21 - 23. To be published in the Journal of Superconductivity. 7 pages, 2 figure

    Controlling Curie temperature in (Ga,Ms)As through location of the Fermi level within the impurity band

    Full text link
    The ferromagnetic semiconductor (Ga,Mn)As has emerged as the most studied material for prototype applications in semiconductor spintronics. Because ferromagnetism in (Ga,Mn)As is hole-mediated, the nature of the hole states has direct and crucial bearing on its Curie temperature TC. It is vigorously debated, however, whether holes in (Ga,Mn)As reside in the valence band or in an impurity band. In this paper we combine results of channeling experiments, which measure the concentrations both of Mn ions and of holes relevant to the ferromagnetic order, with magnetization, transport, and magneto-optical data to address this issue. Taken together, these measurements provide strong evidence that it is the location of the Fermi level within the impurity band that determines TC through determining the degree of hole localization. This finding differs drastically from the often accepted view that TC is controlled by valence band holes, thus opening new avenues for achieving higher values of TC.Comment: 5 figures, supplementary material include

    Resonant Spectroscopy of II-VI Self-Assembled Quantum Dots: Excited States and Exciton-LO Phonon Coupling

    Full text link
    Using resonantly excited photoluminescence along with photoluminescence excitation spectroscopies, we study the carrier excitation processes in CdTe/ZnTe and CdSe/ZnSe self-assembled quantum dots. Photoluminescence excitation spectra of single CdTe quantum dots reflect two major mechanisms for carrier excitation: The first, associated with the presence of sharp and intense lines in the spectrum, is a direct excited state ? ground state transition. The second, associated with the appearance of up to four much broader excitation lines, is a LO phonon-assisted absorption directly into the quantum dot ground states. LO phonons with energies of both quantum dots and ZnTe barrier material are identified in the photoluminescence excitation spectra. Resonantly excited PL measurements for the dot ensemble as a function of excitation energy makes it possible to separate the contributions of these two mechanisms. We find that for CdTe quantum dots the distribution of excited states coupled to the ground states reflects the energy distribution of the quantum dot emission, but shifted up in energy by 100 meV. This large splitting between excited and ground states in CdTe quantum dots suggests strong spatial confinement. In contrast, the LO phonon-assisted absorption shows significant size selectivity. In the case of CdTe dots the exciton-LO phonon coupling is strongly enhanced for smaller-sized dots which have higher emission energies. In contrast, for CdSe quantum dots the exciton-LO phonon coupling is uniform over the ensemble ? that is, the energy distribution determines the intensities of LO phonon replicas. We show that for CdTe quantum dots after annealing, that is after an increase in the average dot size, the exciton-LO phonon interaction reflects the dot energy distribution, as observed for CdSe quantum dots.Comment: 28 pages, 5 figure

    Academic student satisfaction and perceived performance in the e-learning environment during the COVID-19 pandemic: Evidence across ten countries

    Get PDF
    The outbreak of the COVID-19 pandemic has dramatically shaped higher education and seen the distinct rise of e-learning as a compulsory element of the modern educational landscape. Accordingly, this study highlights the factors which have influenced how students perceive their academic performance during this emergency changeover to e-learning. The empirical analysis is performed on a sample of 10,092 higher education students from 10 countries across 4 continents during the pandemic’s first wave through an online survey. A structural equation model revealed the quality of e-learning was mainly derived from service quality, the teacher’s active role in the process of online education, and the overall system quality, while the students’ digital competencies and online interactions with their colleagues and teachers were considered to be slightly less important factors. The impact of e-learning quality on the students’ performance was strongly mediated by their satisfaction with e-learning. In general, the model gave quite consistent results across countries, gender, study fields, and levels of study. The findings provide a basis for policy recommendations to support decision-makers incorporate e-learning issues in the current and any new similar circumstances.info:eu-repo/semantics/publishedVersio
    corecore