607 research outputs found

    The effects of high-temperature brazing and thermal cycling on the mechanical properties of Hastelloy X

    Get PDF
    Data are presented on the effects of brazing alloy, brazing operation, thermal cycling, and combinations of these on the yield strength, elongation, tensile strength, and fatigue life of thin gage Hastelloy X. These data show that brazing at 1461 K (2170 F) with a Ni-Pd-Au alloy and subsequent exposure to 200 service thermal cycles between 533 and 1144 K (500 and 1600 F) result in reduction of as much as 39 percent in yield strength, 33 percent in elongation, 14 percent in tensile strength, and 26 percent in fatigue limit of Hastelloy X, as compared to as-received materials. These property losses are primarily caused by the brazing operation rather than the subsequent service thermal cycles

    Finding the Leptonic WWWW Decay Mode of a Heavy Higgs Boson

    Full text link
    We reanalyze the extraction of the heavy Higgs boson signal H→W+W−→ℓˉν,ℓνˉH\rightarrow W^+W^-\rightarrow \bar\ell\nu,\ell\bar\nu (ℓ=e or μ)(\ell=e\hbox{ or }\mu) from the Standard Model background at hadron supercolliders, taking into account revised estimates of the top quark background. With new acceptance criteria the detection of the signal remains viable. Requiring a forward jet-tag, a central jet-veto, and a large relative transverse momentum of the two charged leptons yields S/B>6S/\sqrt B>6 for one year of running at the SSC or LHC.Comment: LaTex(Revtex), 9 pages, 6 figures (available upon request), MAD/PH/75

    Ablative performance of uncoated silicone-modified and shuttle baseline reinforced carbon composites

    Get PDF
    The relative ablative performance of uncoated silicone-modified reinforced carbon composite (RCC) and uncoated shuttle baseline RCC substrates was investigated. The test specimens were 13 plies (5.3 to 5.8 millimeters) thick and had a 25-millimeter-diameter test face. Prior to arc tunnel testing, all specimens were subjected to a heat treatment simulating the RCC coating process. During arc tunnel testing, the specimens were exposed to cold wall heating rates of 178 to 529 kilowatts/sq m and stagnation pressures ranging from 0.015 to 0.046 atmosphere at Mach 4.6 in air, with and without preheating in nitrogen. The results show that the ablative performance of uncoated silicone-modified RCC substrates is significantly superior to that of uncoated shuttle baseline RCC substrates over the range of heating conditions used. These results indicate that the silicone-modified RCC substrate would yield a substantially greater safety margin in the event of complete coating loss on the shuttle orbiter

    Residual Symmetries Applied to Neutrino Oscillations at NOν\nuA and T2K

    Get PDF
    The results previously obtained from the model-independent application of a generalized hidden horizontal Z2\mathbb{Z}_2 symmetry to the neutrino mass matrix are updated using the latest global fits for the neutrino oscillation parameters. The resulting prediction for the Dirac CPCP phase δD\delta_D is in agreement with recent results from T2K. The distribution for the Jarlskog invariant JνJ_\nu has become sharper and appears to be approaching a particular region. The approximate effects of matter on long baseline neutrino experiments are explored, and it is shown how the weak interactions between the neutrinos and the particles that make up the Earth can help to determine the mass hierarchy. A similar strategy is employed to show how NOν\nuA and T2K could determine the octant of θa(≡θ23)\theta_a (\equiv \theta_{23}). Finally, the exact effects of matter are obtained numerically in order to make comparisons with the form of the approximate solutions. From this analysis there emerges some interesting features of the effective mass eigenvalues.Comment: 9 pages, 1 table, 17 figure

    Fatigue crack growth in 7475-T651 aluminum alloy plate in hard vacuum and water vapor

    Get PDF
    Compact specimens of 25 mm thick aluminum alloy plate were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Crack growth rates were determined at frequencies of 1 Hz and 10 Hz in hard vacuum and laboratory air, and in mixtures of water vapor and nitrogen at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. A significant effect of water vapor on fatigue crack growth rates was observed at the lowest water vapor pressure tested. Crack rates changed little for pressures up to 1.03 kPa, but abruptly accelerated at higher pressures. At low stress intensity factor ranges, cracking rates at the lowest and highest water vapor pressure tested were, respectively, two and five times higher than rates in vacuum. Although a frequency was observed in laboratory air, cracking rates in water vapor and vacuum are insensitive to a ten-fold change in frequency. Surfaces of specimens tested in water vapor and vacuum exhibited different amounts of residual deformation. Reduced deformation on the fracture surfaces of the specimens tested in water vapor suggests embrittlement of the plastic zone ahead of the crack tip as a result of environmental interaction

    The effect of water vapor on fatigue crack Growth in 7475-t651 aluminum alloy plate

    Get PDF
    The effects of water vapor on fatigue crack growth in 7475-T651 aluminum alloy plate at frequencies of 1 Hz and 10 Hz were investigated. Twenty-five mm thick compact specimens were subjected to constant amplitude fatigue testing at a load ratio of 0.2. Fatigue crack growth rates were calculated from effective crack lengths determined using a compliance method. Tests were conducted in hard vacuum and at water vapor partial pressures ranging from 94 Pa to 3.8 kPa. Fatigue crack growth rates were frequency insensitive under all environment conditions tested. For constant stress intensity factor ranges crack growth rate transitions occurred at low and high water vapor pressures. Crack growth rates at intermediate pressures were relatively constant and showed reasonable agreement with published data for two Al-Cu-Mg alloys. The existence of two crack growth rate transitions suggests either a change in rate controlling kinetics or a change in corrosion fatigue mechanism as a function of water vapor pressure. Reduced residual deformation and transverse cracking specimens tested in water vapor versus vacuum may be evidence of embrittlement within the plastic zone due to environmental interaction

    Emittance of TD-NiCr after simulated reentry

    Get PDF
    The effects of simulated reentry heating on the emittance of TD-NiCr were investigated. Groups of specimens with three different preconditioning treatments were exposed to 6, 24, and 30 half-hour simulated reentry exposure cycles in a supersonic arc tunnel at each of three conditions intended to produce surface temperatures of 1255, 1365, and 1475 K. Emittance was determined at 1300 K on specimens which were preconditioned only and specimens after completion of reentry simulation exposure. Oxide morphology and chemistry were studied by scanning electron microscopy and X-ray diffraction analysis. A consistent relationship was established between oxide morphology and total normal emittance. Specimens with coarser textured oxides tended to have lower emittances than specimens with finer textured oxides

    Modified Composite Materials Workshop

    Get PDF
    The reduction or elimination of the hazard which results from accidental release of graphite fibers from composite materials was studied at a workshop. At the workshop, groups were organized to consider six topics: epoxy modifications, epoxy replacement, fiber modifications, fiber coatings and new fibers, hybrids, and fiber release testing. Because of the time required to develop a new material and acquire a design data base, most of the workers concluded that a modified composite material would require about four to five years of development and testing before it could be applied to aircraft structures. The hybrid working group considered that some hybrid composites which reduce the risk of accidental fiber release might be put into service over the near term. The fiber release testing working group recommended a coordinated effort to define a suitable laboratory test

    Two photons plus jet al LHC: the NNLO contribution from the gg initiated process

    Full text link
    The production of the Standard Model Higgs boson of mass ~ 100-140 GeV at the LHC likely gives clear signals in the γγ\gamma \gamma (1) and in the γγjet\gamma \gamma jet (2) channels. The quantitative evaluation of the background to channel (1) is very hard since the next-to-leading order (NLO) and next-to-next-to-leading order (NNLO) QCD corrections are large. In particular, the contributions of the NNLO QCD subprocess gg−>γγgg -> \gamma \gamma to inclusive γγ\gamma\gamma production is comparable to the contribution of the leading order subprocess qqˉ−>γγq\bar{q} -> \gamma \gamma. The quantitative description of the background to channel (1), therefore, requires to calculate all corrections up to the NNNLO level. In this letter we present results on the contribution of the NNLO QCD subprocess gg−>gγγgg -> g \gamma \gamma to the production rate of channel (2). We have found that in this case this NNLO contribution is less than 20% of the Born contribution. Since the NNLO contributions will likely be dominated by this subprocess one can argue that in the case of channel (2) - contrary to the case of channel (1)- a quantitative description of the background can be achieved already at next-to-leading order accuracy.Comment: 7 pages, two figures include

    High energy photon-neutrino elastic scattering

    Get PDF
    The one-loop helicity amplitudes for the elastic scattering process γν→γν\gamma\nu\to\gamma\nu in the Standard Model are computed at high center of mass energies. A general decomposition of the amplitudes is utilized to investigate the validity of some of the key features of our results. In the center of mass, where s=2ω\sqrt{s} = 2\omega, the cross section grows roughly as ω6\omega^6 to near the threshold for WW-boson production, s=mW\sqrt{s} = m_W. Although suppressed at low energies, we find that the elastic cross section exceeds the cross section for γν→γγν\gamma\nu\to\gamma\gamma\nu when s>13\sqrt{s}>13 GeV. We demonstrate that the scattered photons are circularly polarized and the net value of the polarization is non-zero. Astrophysical implications of high energy photon-neutrino scattering are discussed.Comment: 9 pages, 7 figures, RevTeX
    • …
    corecore