research

Effect of a 180 deg-extent inlet pressure distortion on the internal flow conditions of a TF30-P-3

Abstract

The measured effects of inlet pressure distortion on the internal flow temperatures and pressures of a TF30-P-3 afterburning turbofan engine are reported. Extensive inner-stage instrumentation combined with stepwise rotation of pressure distortion provided a high degree of circumferential resolution in the data. The steady-state spatial variation in pressures, temperature, and calculated flow velocity and the amplitude and extent of the distorted sectors are given. Data are presented for runs of 77 and 90 percent of low-speed-rotor design speed at pressure distortion levels two-thirds of that required to stall the engine. These data are compared with data taken at clean-inlet conditions. Results indicate that the inlet pressure distortion was quickly attenuated within the compressor, except at the hub of the low-pressure compressor. The distorted sectors also swirled and varied in extent as they passed through the engine. Average velocities within the compressor were about equal to the clean-inlet values

    Similar works