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THE EFFECTS OF HIGH-TEMPERATURE BRAZING AND CYCLING 

ON THE MECHANICAL PROPERTIES OF HASTELLOY X 

Dennis L. D i c u s  and Dr. John D. Buckley 

NASA Langley Research Center 
Hampton, Virginia 

ABSTRACT 

Data are presented on the effects  of brazing al loy,  brazing operation, 
thermal cycling, and combinations of these on the  yield strength, elongation, 
t e n s i l e  strength,  and fat igue l i f e  of t h in  gage Hastelloy X. These data  show 
t h a t  brazing a t  1461 K (2170° F) with a Ni-Pd-Au a l loy  and subsequent exposure 
t o  200 service thermal cycles between 533-and 1144 K (500' and 1600~ F) 
resulted i n  reduction of as much as 39 percent i n  y ie ld  strength, 33 percent 
i n  elongation, 14  percent i n  t e n s i l e  strength,  and 26 percent i n  fatigue l i m i t  
of Hastelloy X, as compared t o  as-received materials. These property losses 
were primarily caused by the  brazing operation ra ther  than the subsequent 
service thermal cycles. 

I INTFiODUCTION 

High-temperature brazing is  a commonly used joining process i n  the  aero- 
space industry (refs. 1, 2, and 3 ) .  
are frequently b u i l t  using a s tep brazing technique that allows successive 
pa r t s  t o  be joined, one o r  two at  a time with successively lower melting point 
brazing al loys (refs. 2 and 4).  

Complex s t ructures  l ike heat exchangers 

A step-brazing process was employed i n  the  fabricat ion of t he  regenera- 
t i v e l y  cooled Hypersonic Research lbgine (ref. 5 ) .  
cooling s t ructure ,  which is made of Hastelloy X,* f a i l e d  during burst  tests at 
stress values much lower than predicted by the known mechanical properties of 
the metal. In  addition, other models of t h i s  same structure f a i l e d  prematurely 
during thermal cycling under s t r e s s  (ref. 6).  
taken at NASA Langley Research Center t o  assess the  probable cause of the 
apparent degradation of the properties of Hastelloy X. The objective of t h i s  
study w a s  t o  determine the  e f fec ts  of (1) brazing alloy, (2) brazing operation, 
and (3)  simulated engine operating cycles (hereinaf ter  referred t o  as service 
thermal cycles) on the  fatigue and mechanical properties of Hastelloy X. 

T e s t  models of the  engine's 

A research program was under- 

*Nickel-based superalloy manufactured by Union Carbide Corporation. 
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MAmms AND SPECrnS 

Table I shows the chemical composition of the base metal and brazing 
alloys used i n  t h i s  study. Table I1 shows the melting temperature range of 
the  two brazing alloys used, Palniro I* and Palniro be* The melting tempera- 
ture  range of Palniro 1 is lower than tha t  of Palniro 4 alloking the use of 
these alloys i n  a step-brazing process. 

Figures l (a )  and l ( b )  show the bare metal and as-brazed tens i le  test 
specimen configurations. 
configurations are shown i n  figures 2(a) and 2(b). 
from sheet material'and machined t o  f i n a l  size. 

Bare m e t a l  and as-brazed fatigue test specimen 
All specimens were cut 

Figure 3 shows the specimen configuration used t o  study interactions 
between the base metal and the brazing alloy. 
from specimens of t h i s  type after brazing and mounted fo r  metallographic and 
electron microprobe analysis. Transverse and longitudinal sections were cut 
from tens i le  specimens after tes t ing and mounted f o r  metallographic examination. 
Fracture surfaces of the tensi le  specimens were analyzed using a scanning 
electron microscope. 

Longitudinal sections were cut 

Prior t o  brazing, specimens were deburred and cleaned by the following 
method: 
with tap water, rubbed with pumice, descaled by immersion i n  an acid (30 percent 
n i t r i c ,  15 percent hydrofloric, 55 percent water) bath for  15 minutes, rinsed 
with tap water, and hot-air dried. Tensile tests on cleaned specimens showed 
t h i s  cleaning procedure had no detrimental effects on Hastelloy X. 
cleaning, a 76.2 pm (0.003 in . )  thick s t r i p  of brazing al loy was tack spot 
welded t o  the tens i le  and fatigue specimens. 
brazing alloy s t r i p  covered the  length of the  test section, and on the fatigue 
specimens it covered a 5.1 cm (2 in.) section i n  the middle of the specimen. 
(See figs.  l ( b )  and 2(b).  ) Chromel-alumel thermocouples were tack welded t o  
the specimens j u s t  outside of the test section f o r  temperature control and 
monitoring during brazing. The specimens were placed on- alumina-coated 
carbon block and inserted into a vacuum furnace in  the horizontal plane. 
brazing heat cycles fo r  both the Palniro 1 and Palniro 4 brazing alloys are 
described i n  Table I11 and i l lus t ra ted  i n  figure 4. 
are quite similar with the Palniro 1 operation involving a lower maximum 
temperature and a shorter t o t a l  time than that used fo r  Palniro 4. 
brazing, the tens i le  and fatigue specimens were hand-sanded and polished t o  
reduce the thickness of the brazing al loy t o  approximately 25.4 pm (0.001 in . )>  
f i n a l  machined, and deburredo 

degreased with trichloroethylene, dipped i n  alkaline solution, rinsed 

After 

On the tens i le  specimens, the 

The 

The two brazing operations 

After 

*Manufactured by Western Gold and Platinum Company. 



Specimens t o  be exposed t o  service thermal cycling were again instrumented 
with thermocouples, mounted on a transite block, and l igh t ly  clamped t o  prevent 
distortion during heating. 
procedure which was accomplished by radiant heating i n  air  with a tungsten 
filament quartz lamp bank coupled t o  a specimen temperature controller. 
t o  the first cycle the specimens were preheated t o  977 K (l3OO0 F) i n  
180 seconds (3 minutes) and cooled by airblast  t o  533 K (500' F). 
specimens were then cycled 200 times between 533 and Uh-4 K (500' and 1600' F). 
Each cycle lasted 80 seconds and included a 20-second holg at theohigh tempera- 
ture.  The specimens were cooled f r o m  1144 t o  533 K (1600 t o  500 F) by 
airblast. 

Figure 5 i l lus t ra tes  the service thermal cycling 

Prior 

These 

Two series of tens i le  t e s t s  were conducted in  the air at room temperature. 
An i n i t i a l  screening series covering the material conditions shown in the 
table below was conducted without strainsmeasurement t o  determine ultihate 
tensi le  strength and t o  identify conditions tha t  should be examined i n  the 
fatigue t e s t s  and another series of tens i le  tes t s .  
t e s t s  were conducted a t  a s t ra in  ra te  of 0.02 per minute. 

These i n i t i a l  screening 

Material Conditions Exmined in  I n i t i a l  Screening Tensile Tests 

1. As -received 

2. As-brazed with Palniro 1 

3. As-brazed w i t h  Palniro 1 and service thermal cycled 

4. As-brazed with Palniro 4 

5 .  

6 .  

As-brazed with Palniro 4 and service thermal cycled 

As-exposed t o  Palniro 4 brazing heat cycle 
(no braze alloy used) 

7. As-exposed t o  Palniro 4 braziRg heat cycle (no braze alloy used) 
and service thermal cycled 

8 .  As service thermal cycled (no braze alloy used) 

The second series of tens i le  t e s t s  was conducted at  s t ra in  rates of 
0.002 per minute and 0.08 per minute before and after yielding, respectively. 
Tensile s t ra in  f o r  t h i s  t e s t  series was measured by a s t ra in  gage extensometer 
with a 5.1 cm (2 in . )  gage length. 

Constant amplitude fatigue t e s t s  were conducted i n  subresonant-type axial  

A wire s t ra in  gage 
load fatigue machines operated at  a frequency of 30 Hz (ref.  7). 
sensed by a weigh-bar in  series with the gripped specimen. 
bridge cemented t o  the weigh-bar supplied the load signal t o  an oscilloscope 

Load was 
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used t o  monitor the cyclic load. 
maintain a loading accuracy of +88N (+20 l b ) .  

The machines were calibrated periodically t o  

DISCUSSION OF RESULTS 

The results of the  i n i t i a l  screening t e n s i l e  tests a r e  summarized i n  
f igure  6. 
of f i ve  t e s t s  each. These data indicate tha t  Palniro 1 brazing &/or the 
service thermal cycling had v i r tua l ly  no e f fec t  on the  ultimate tensile strength 
of Hastelloy X. However, the  four conditions involving the  Palniro 4 brazing 
operation each caused about a 6 percent reduction i n  ultimate t e n s i l e  strength. 
Since t h i s  reduction occurred i n  both brazed specimens and unbrazed speeimens 
subjected t o  the  Palniro 4 heat cycle, it appears t h a t  the brazing heat cycle 
is primarily responsible f o r  the  reduction i n  ultimate t ens i l e  strength. 

Eight d i f fe ren t  parent metal conditions were examined with a minimum 

Metallographic studies were conducted on sections cut from brazing alloy- 
base metal interaction specimens ( f ig .  3 )  t o  observe the e f fec ts  of the brazing 
operation on Hastelloy X. Figures ?(a), 7(b), and 7 (c ) ,  respectively, show 
the virgin base m e t a l ,  t he  base metal a f t e r  brazing with Palniro 1, and the 
base metal a f t e r  brazing with Palniro 4. 
operations resulted i n  grains which were 1.2 and 6 times la rger  than as- 
received grains, respectively. 

The Palniro 1 and Palniro 4 brazing 

Figure 8 i l l u s t r a t e s  the e f fec ts  of the step-brazing procedure involving 
successive brazing operations with Palniro 4 and Palniro 1. The microstructure 
resul t ing f r o m  the f i r s t  step,  brazing with Palniro 4, is shown in  f igure 8(a) .  
The r e su l t  of s tep 2, brazing w i t h  Palniro 1, is i l l u s t r a t e d  i n  f igure 8(b) .  
I n  f igure 8(b) the base metal above the  brazing a l loy  has experienced both 
brazing cycles and shows no fur ther  grain growth over f igure  8(a). The base 
metal below the  brazing a l loy  has experienced only the lower maxirmUn tempera- 
ture ,  Palniro 1 brazing cycle. 

Sections cut f r o m  these interact ion specimens were subjected t o  electron 
microprobe analysis. Considerable dissolution of the  nickel i n  the  base metal 
adjacent t o  the brazing a l loy  interface occurred during the brazing operation. 
Migration of the  nickel in to  the  brazing a l loy  was indicated by higher nickel 
content present i n  the brazing alloy. 
gold i n  the brazing a l loy  was also indicated.* This dissolution and migration 
of the nickel apparently had no effect  on the ultimate t ens i l e  strength of the  
metal, however, since the t ens i l e  strength of tb brazed specimens and of t he  
unbrazed specimens subjected t o  the Palniro 4 heat cycle w a s  about the same. 
(See f ig .  6.) 

I n  addition, microsegregation of the 

Additiaml t e n s i l e  and fat igue tests were performed on Hastelloy X i n  the 

Figure 9 shows typical  s t ress -s t ra in  diagrams f o r  
following conditions: 
and service thermal cycled. 

as-received, as-brazed with Palnfro 4, and as-brazed 

f 

*Analysis performed by W. Barry Lisagor, NASA Langley Research Center. 



the  conditions j u s t  described. 
i n  tab le  IV. 
a 6 percent decrease i n  ultimate t ens i l e  strength,  a 35 percent decrease i n  
yield strength, and a greater  than one-third reduction i n  elongation t o  failure. 
Specimens subjected t o  service thermal cycling a f t e r  brazing shmed only small 
changes i n  these properties as compared t o  the  changes resul t ing from the  
brazing operat ion. 

A summary of the t ens i l e  test results is shown 
These data show that the  Palniro 4 brazing operation results i n  

Due t o  the  unusual finding t h a t  both the  yield strength and the elongation 
t o  f a i lu re  decreased as a re su l t  of the  Palniro 4 brazing operation, sections 
were cut from the as-tested specimens f o r  metallographic exmination, and the 
f rac ture  surfaces were studied with a scanning electron microscope. A photo- 
micrograph of the  as-received base metal before t e n s i l e  t e s t ing  is shown i n  
f igure lO(a) . Figures 10(b) through l O ( d )  show photomicrographs typical  of 
the  as-received, as-brazed with Palniro 4, and as-brazed and se r r i ce  thermal 
cycled specimens a f t e r  tes t ing.  These photomicrographs showed grain growth 
similar t o  that  shown i n  f igure 7. Figures l l ( a )  through l l ( c )  show typica l  
f rac ture  surfaces of the as-received, as-brazed w i t h  Palniro 4, and as-brazed 
and service thermal cycled specimens. Intergranular f racture  occurred i n  the 
two specimens exposed t o  the brazing operation, whereas.intragranular f racture  
occurred i n  the as-received mecimen. This intergranular cracking occurred 
only i n  specimens which were actual ly  brazed with Palniro 4 (i.e., not i n  
specimens subjected t o  the P d n i r o  4 heating cycle alone).  Consequently, 
select ive embrittlement of the  grain boundaries promoted by the thermochemical 
reaction of the Hastelloy X with the brazing a l loy  appears t o  have occurred. 
In addition, the f rac ture  surfaces within the  grains of the  specimens exposed 
t o  brazing had a duct i le  appearance. 

The grain growth resul t ing from the Palniro 4 brazing operation normally 
would indicate an annealing phenomenon associated with the  high brazing 
temperature. The metal within the grains remained duct i le .  This annealing 
would account f o r  the observed reduction in ultimate t e n s i l e  strength and 
yield strength. 
of t he  brazed specimens indicates embrittling, which would account f o r  the 
reduction i n  elongation t o  fa i lure .  

The intergranular f a i l u t e  apparent i n  the f rac ture  surfaces 

. 

Figure I 2  presents the resu l t s  of constant amplitude fat igue tests on 

The specimens brazed w i t h  Palniro 4 exhib ted a 
specimens exposed t o  the same brazing and service thermal cycling conditions 
as the  t ens i l e  specimens. 

cycles) o r  386 MN/m2 (56 KSI) as compared t o  469 MN/m2 (68 KSI) f o r  the as- 
received specimens. Those specimens brazed and service thermal cycled had a 
fatigue l i m i t  of 345 MN/m2 (50 GI). These resu l t s  are consistent with the 
t ens i l e  t e s t  resu l t s  i n  t h a t  the brazing operation caused most of the observed 
degradation of the  mechanical properties of Hastelloy X and that service thermal 
cycling had only a small additional e f fec t .  

fa t igue l i m i t  ( the  maximum s t r e s s  t h a t  w i l l  not cause f rac ture  i n  10 3 s t r e s s  

5 
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CONCLUDING REMARKS 

The r e su l t s  of these studies in to  the  e f fec ts  of brazing al loy,  brazing 
operation, and service thermal cycling on the  mechanical properties of 
Hastelloy X a r e  as follows: 

1. The Palniro 1 brazing operation apparently had l i t t l e  o r  no ef fec t  on 
the mechanical properties of Hastelloy X. 

2. The Palniro 4 brazing operation, however, decreased the  ult imate 
t ens i l e  strength by 6 percent, lowered the yield strength by 35 percent, and 
decreased the elongation t o  f a i l u r e  of Hastelloy X by more than one-third. 
These e f fec ts  were probably caused by both the  higher brazing temperature and 
a themchemica l  reaction of the brazing a l loy  with the base metal. 
lower ultimate t ens i l e  strength and yield strength were probably caused by the  
brazing temperature while the lower elongation t o  f a i l u r e  was apparently due 
t o  select ive embrittlement of the grain boundaries resul t ing from a t h e m -  
chemical reaction. 
18 percent reduction i n  the fat igue l i m i t  of Hastelloy X. 

The 

I n  addition, the Palniro 4 brazing operation caused an 

- ,  

3. The ef fec t  of service thermal cycling on the  mechanical properties of 
Hastelloy X w a s  much l e s s  s ignif icant  than the e f fec t  of the Palniro 4 brazing 
operation. 
caused fur ther  but smaller reductions i n  ultimate t ens i l e  strength, yield 
strength, and fat igue l i m i t  of 8 percent, 4 percent, and 8 percent, 
respectively. 

Two hundred thermal cycles between 533 and U44 K (500' and 1 6 0 0 ~  F) 
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TABLEI - 

MATERIAL COMPOSmtION 

Material 

Hastelloy X* 

Palniro 1** 

P d n i r o  4** 

I I 

Dement 

Cr W Fc C S i  

22.14 0.47 18.09 0.08 0.39 

S Au 

0.005 

50 

30 

*Union Carbide Corporation. 
**Western Gold and Platinum Company. 

Pd 

25 

34 

TAELE I1 

MELTING TEN€'- RANGE OF BRAZING ALLOYS 

Palniro 1 

P d i r o  4 

Brazing Solidus Liquidus 
(F 1 (F) 

1375 (2016) 1394 (2050) 

1408 (2075) 1442 (2136) 



TABm I11 

BRAZING PROCEDURES 

1 

Step Palniro 1 1 Pdn i ro  4 
2 &ac t e  f’urnace to  0.13 N/m 2 

y” Evacuate furnace t o  0.13 N/m 
(10-3 t o r r )  (10- t o r r )  

Raise specimen temperature to  
135 K (1800~ F) i n  about 

chamber with dry argon t o  a 
pressure of 20.7 m/m2 (3 psi) 
above ambient 

9 



TABLE Iv 

RESWPS OF TENSILE TESTS ON HASTEIJ;oY X 

Yield strength 
( 0.2 percent offset ) Material 

As -received 

1 325.9 (47.3) Brazed with 
P&iro 4 

Elongation to 
f allure, Ultimate strength 

m/m2 (KSI) percent 

850.2 (123.4) 38.2 

24.8 

I 
26.1 

1 

Brazed with 
P e i r o  4 and 
service thermal 
cycled 

305.9 (44.4) 
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