385 research outputs found
Nonmetricity and torsion induced by dilaton gravity in two dimension
We develop a theory in which there are couplings amongst Dirac spinor,
dilaton and non-Riemannian gravity and explore the nature of connection-induced
dilaton couplings to gravity and Dirac spinor when the theory is reformulated
in terms of the Levi-Civita connection. After presenting some exact solutions
without spinors, we investigate the minimal spinor couplings to the model and
in conclusion we can not find any nontrivial dilaton couplings to spinor.Comment: Added references, Accepted for publication in GR
String-Inspired Chern-Simons Modified Gravity In 4-Dimensions
Chern-Simons modified gravity models in 4-dimensions are shown to be special
cases of low energy effective string models to first order in the string
constant.Comment: To appear in the European Physics Journal
An Einstein-Hilbert Action for Axi-Dilaton Gravity in 4-Dimensions
We examine the axi-dilatonic sector of low energy string theory and
demonstrate how the gravitational interactions involving the axion and dilaton
fields may be derived from a geometrical action principle involving the
curvature scalar associated with a non-Riemannian connection. In this geometry
the antisymmetric tensor 3-form field determines the torsion of the connection
on the frame bundle while the gradient of the metric is determined by the
dilaton field. By expressing the theory in terms of the Levi-Civita connection
associated with the metric in the ``Einstein frame'' we confirm that the field
equations derived from the non-Riemannian Einstein-Hilbert action coincide with
the axi-dilaton sector of the low energy effective action derived from string
theory.Comment: 6 pages Plain Tex (No Figures), Letter to Editor Classical and
Quantum Gravit
Conformal Black Hole Solutions of Axi-Dilaton Gravity in D-dimensions
Static, spherically symmetric solutions of axi-dilaton gravity in
dimensions is given in the Brans-Dicke frame for arbitrary values of the
Brans-Dicke constant and an axion-dilaton coupling parameter . The
mass and the dilaton and axion charges are determined and a BPS bound is
derived. There exists a one parameter family of black hole solutions in the
scale invariant limit.Comment: 6 PAGES, Rev-tex file, no figures, to appear in Phys-Rev
String Fields and the Standard Model
The Cremmer-Scherk mechanism is generalised in a non-Abelian context. In the
presence of the Higgs scalars of the standard model it is argued that fields
arising from the low energy effective string action may contribute to the mass
generation of the observed vector bosons that mediate the electroweak
interactions and that future analyses of experimental data should consider the
possibility of string induced radiative corrections to the Weinberg angle
coming from physics beyond the standard model.Comment: 4 pages, LATEX, no figure
Non-Riemannian Gravity and the Einstein-Proca System
We argue that all Einstein-Maxwell or Einstein-Proca solutions to general
relativity may be used to construct a large class of solutions (involving
torsion and non-metricity) to theories of non-Riemannian gravitation that have
been recently discussed in the literature.Comment: 9 pages Plain Tex (No Figures), Letter to Editor Classical and
Quantum Gravit
Poisson-sigma model for 2D gravity with non-metricity
We present a Poisson-sigma model describing general 2D dilaton gravity with
non-metricity, torsion and curvature. It involves three arbitrary functions of
the dilaton field, two of which are well-known from metric compatible theories,
while the third one characterizes the local strength of non-metricity. As an
example we show that alpha' corrections in 2D string theory can generate
(target space) non-metricity.Comment: 9 page
Dark Matter Gravitational Interactions
We argue that the conjectured dark mater in the Universe may be endowed with
a new kind of gravitational charge that couples to a short range gravitational
interaction mediated by a massive vector field. A model is constructed that
assimilates this concept into ideas of current inflationary cosmology. The
model is also consistent with the observed behaviour of galactic rotation
curves according to Newtonian dynamics. The essential idea is that stars
composed of ordinary (as opposed to dark matter) experience Newtonian forces
due to the presence of an all pervading background of massive gravitationally
charged cold dark matter. The novel gravitational interactions are predicted to
have a significant influence on pre-inflationary cosmology. The precise details
depend on the nature of a gravitational Proca interaction and the description
of matter. A gravitational Proca field configuration that gives rise to
attractive forces between dark matter charges of like polarity exhibits
homogeneous isotropic eternal cosmologies that are free of cosmological
curvature singularities thus eliminating the horizon problem associated with
the standard big-bang scenario. Such solutions do however admit dense hot
pre-inflationary epochs each with a characteristic scale factor that may be
correlated with the dark matter density in the current era of expansion. The
model is based on a theory in which a modification of Einsteinian gravity at
very short distances can be expressed in terms of the gradient of the Einstein
metric and the torsion of a non-Riemannian connection on the bundle of linear
frames over spacetime. Indeed we demonstrate that the genesis of the model
resides in a remarkable simplification that occurs when one analyses the
variational equations associated with a broad class of non-Riemannian actions.Comment: 40 pages, 4 Postscript figure
Exact Solutions in Five-Dimensional Axi-dilaton Gravity with Euler-Poincare Term
We examine the effective field equations that are obtained from the
axi-dilaton gravity action with a second order Euler-Poincare term and a
cosmological constant in all higher dimensions. We solve these equations for
five-dimensional spacetimes possessing homogeneity and isotropy in their
three-dimensional subspaces. For a number of interesting special cases we show
that the solutions fall into two main classes: The first class consists of
time-dependent solutions with spherical or hyperboloidal symmetry which require
certain fine-tuning relations between the coupling constants of the model and
the cosmological constant. Solutions in the second class are locally static and
prove the validity of Birkhoff's staticity theorem in the axi-dilaton gravity.
We also give a special class of static solutions, among them the well-known
black hole solutions in which the usual electric charge is superseded by an
axion charge.Comment: New formulas and references adde
Black Holes with Weyl Charge and Non-Riemannian Waves
A simple modification to Einstein's theory of gravity in terms of a
non-Riemannian connection is examined. A new tensor-variational approach yields
field equations that possess a covariance similar to the gauge covariance of
electromagnetism. These equations are shown to possess solutions analogous to
those found in the Einstein-Maxwell system. In particular one finds
gravi-electric and gravi-magnetic charges contributing to a spherically
symmetric static Reissner-Nordstr\"om metric. Such Weyl ``charges'' provide a
source for the non-Riemannian torsion and metric gradient fields instead of the
electromagnetic field. The theory suggests that matter may be endowed with
gravitational charges that couple to gravity in a manner analogous to
electromagnetic couplings in an electromagnetic field. The nature of
gravitational coupling to spinor matter in this theory is also investigated and
a solution exhibiting a plane-symmetric gravitational metric wave coupled via
non-Riemannian waves to a propagating spinor field is presented.Comment: 18 pages Plain Tex (No Figures), Classical and Quantum Gravit
- …