1,145 research outputs found
Recommended from our members
Controlling a Van Hove singularity and Fermi surface topology at a complex oxide heterostructure interface.
The emergence of saddle-point Van Hove singularities (VHSs) in the density of states, accompanied by a change in Fermi surface topology, Lifshitz transition, constitutes an ideal ground for the emergence of different electronic phenomena, such as superconductivity, pseudo-gap, magnetism, and density waves. However, in most materials the Fermi level, [Formula: see text], is too far from the VHS where the change of electronic topology takes place, making it difficult to reach with standard chemical doping or gating techniques. Here, we demonstrate that this scenario can be realized at the interface between a Mott insulator and a band insulator as a result of quantum confinement and correlation enhancement, and easily tuned by fine control of layer thickness and orbital occupancy. These results provide a tunable pathway for Fermi surface topology and VHS engineering of electronic phases
Orbital character effects in the photon energy and polarization dependence of pure C60 photoemission
Recent direct experimental observation of multiple highly-dispersive C
valence bands has allowed for a detailed analysis of the unique photoemission
traits of these features through photon energy- and polarization-dependent
measurements. Previously obscured dispersions and strong photoemission traits
are now revealed by specific light polarizations. The observed intensity
effects prove the locking in place of the C molecules at low
temperatures and the existence of an orientational order imposed by the
substrate chosen. Most importantly, photon energy- and polarization-dependent
effects are shown to be intimately linked with the orbital character of the
C band manifolds which allows for a more precise determination of the
orbital character within the HOMO-2. Our observations and analysis provide
important considerations for the connection between molecular and crystalline
C electronic structure, past and future band structure studies, and for
increasingly popular C electronic device applications, especially those
making use of heterostructures
Non-Fermi liquid angle resolved photoemission lineshapes of Li0.9Mo6O17
A recent letter by Xue et al. (PRL v.83, 1235 ('99)) reports a Fermi-Liquid
(FL) angle resolved photoemission (ARPES) lineshape for quasi one-dimensional
Li0.9Mo6O17, contradicting our report (PRL v.82, 2540 ('99)) of a non-FL
lineshape in this material. Xue et al. attributed the difference to the
improved angle resolution. In this comment, we point out that this reasoning is
flawed. Rather, we find that their data have fundamental differences from other
ARPES results and also band theory.Comment: To be published as a PRL Commen
Recommended from our members
Polarization control at the microscopic and electronic structure observatory
The new Microscopic and Electronic Structure Observatory (MAESTRO) at the Advanced Light Source (ALS) in Berkeley provides X-rays of variable polarization, produced by an elliptically polarized undulator (EPU), for angle resolved photoemission (ARPES) and photoemission electron microscopy (PEEM) experiments. The interpretation of photoemission data, in particular of dichroism effects in ARPES, requires the precise knowledge of the exact polarization state. Numerical simulations show that the first harmonics of the EPU at MAESTRO provides soft X-rays of almost 100% on axis polarization. However, the higher harmonics as well as the downstream optical elements of the beamline, have a considerable impact on the polarization of the light delivered to the experimental end-station. Employing a simple reflective polarimeter, the polarization is characterized for variable EPU and beamline settings and the overall degree of polarization in the MAESTRO end-stations is estimated to be on the order of 83%
- …
