869 research outputs found
Reaction, Levy Flights, and Quenched Disorder
We consider the A + A --> emptyset reaction, where the transport of the
particles is given by Levy flights in a quenched random potential. With a
common literature model of the disorder, the random potential can only increase
the rate of reaction. With a model of the disorder that obeys detailed balance,
however, the rate of reaction initially increases and then decreases as a
function of the disorder strength. The physical behavior obtained with this
second model is in accord with that for reactive turbulent flow, indicating
that Levy flight statistics can model aspects of turbulent fluid transport.Comment: 6 pages, 5 pages. Phys. Rev. E. 65 (2002) 011109--1-
Disclination Asymmetry in Two-Dimensional Nematic Liquid Crystals with Unequal Frank Constants
The behavior of a thin film of nematic liquid crystal with unequal Frank
constants is discussed. Distinct Frank constants are found to imply unequal
core energies for and disclinations. Even so, a topological
constraint is shown to ensure that the bulk densities of the two types of
disclinations are the same. For a system with free boundary conditions, such as
a liquid membrane, unequal core energies simply renormalize the Gaussian
rigidity and line tension.Comment: RevTex forma
Reactive Turbulent Flow in Low-Dimensional, Disordered Media
We analyze the reactions and
occurring in a model of turbulent flow in two dimensions. We find the reactant
concentrations at long times, using a field-theoretic renormalization group
analysis. We find a variety of interesting behavior, including, in the presence
of potential disorder, decay rates faster than that for well-mixed reactions.Comment: 6 pages, 4 figures. To appear in Phys. Rev.
Schwinger Boson Formulation and Solution of the Crow-Kimura and Eigen Models of Quasispecies Theory
We express the Crow-Kimura and Eigen models of quasispecies theory in a
functional integral representation. We formulate the spin coherent state
functional integrals using the Schwinger Boson method. In this formulation, we
are able to deduce the long-time behavior of these models for arbitrary
replication and degradation functions.
We discuss the phase transitions that occur in these models as a function of
mutation rate. We derive for these models the leading order corrections to the
infinite genome length limit.Comment: 37 pages; 4 figures; to appear in J. Stat. Phy
Multicanonical molecular dynamics by variable-temperature thermostats and variable-pressure barostats
Sampling from flat energy or density distributions has proven useful in equilibrating complex systems
with large energy barriers. Several thermostats and barostats are presented to sample these
flat distributions by molecular dynamics. These methods use a variable temperature or pressure
that is updated on the fly in the thermodynamic controller. These methods are illustrated on a
Lennard-Jones system and a structure-based model of proteins
Effective diffusion constant in a two dimensional medium of charged point scatterers
We obtain exact results for the effective diffusion constant of a two
dimensional Langevin tracer particle in the force field generated by charged
point scatterers with quenched positions. We show that if the point scatterers
have a screened Coulomb (Yukawa) potential and are uniformly and independently
distributed then the effective diffusion constant obeys the
Volgel-Fulcher-Tammann law where it vanishes. Exact results are also obtained
for pure Coulomb scatterers frozen in an equilibrium configuration of the same
temperature as that of the tracer.Comment: 9 pages IOP LaTex, no figure
Dispersion Coefficients by a Field-Theoretic Renormalization of Fluid Mechanics
We consider subtle correlations in the scattering of fluid by randomly placed
obstacles, which have been suggested to lead to a diverging dispersion
coefficient at long times for high Peclet numbers, in contrast to finite
mean-field predictions. We develop a new master equation description of the
fluid mechanics that incorporates the physically relevant fluctuations, and we
treat those fluctuations by a renormalization group procedure. We find a finite
dispersion coefficient at low volume fraction of disorder and high Peclet
numbers.Comment: 4 pages, 1 figure; to appear in Phys. Rev. Let
Renormalization of Drift and Diffusivity in Random Gradient Flows
We investigate the relationship between the effective diffusivity and
effective drift of a particle moving in a random medium. The velocity of the
particle combines a white noise diffusion process with a local drift term that
depends linearly on the gradient of a gaussian random field with homogeneous
statistics. The theoretical analysis is confirmed by numerical simulation. For
the purely isotropic case the simulation, which measures the effective drift
directly in a constant gradient background field, confirms the result
previously obtained theoretically, that the effective diffusivity and effective
drift are renormalized by the same factor from their local values. For this
isotropic case we provide an intuitive explanation, based on a {\it spatial}
average of local drift, for the renormalization of the effective drift
parameter relative to its local value. We also investigate situations in which
the isotropy is broken by the tensorial relationship of the local drift to the
gradient of the random field. We find that the numerical simulation confirms a
relatively simple renormalization group calculation for the effective
diffusivity and drift tensors.Comment: Latex 16 pages, 5 figures ep
Thermophysical and chemical characterization of charring ablative materials Final report
Thermophysical and chemical properties of charring ablative material
A Hierarchical Approach to Protein Molecular Evolution
Biological diversity has evolved despite the essentially infinite complexity
of protein sequence space. We present a hierarchical approach to the efficient
searching of this space and quantify the evolutionary potential of our approach
with Monte Carlo simulations. These simulations demonstrate that non-homologous
juxtaposition of encoded structure is the rate-limiting step in the production
of new tertiary protein folds. Non-homologous ``swapping'' of low energy
secondary structures increased the binding constant of a simulated protein by
relative to base substitution alone. Applications of our approach
include the generation of new protein folds and modeling the molecular
evolution of disease.Comment: 15 pages. 2 figures. LaTeX styl
- …
