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Sampling from flat energy or density distributions has proven useful in equilibrating complex sys-
tems with large energy barriers. Several thermostats and barostats are presented to sample these
flat distributions by molecular dynamics. These methods use a variable temperature or pressure
that is updated on the fly in the thermodynamic controller. These methods are illustrated on a
Lennard-Jones system and a structure-based model of proteins. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4773435]

I. INTRODUCTION

Molecular dynamics (MD) is a useful tool to study
complex molecular systems. A regular MD simply follows
Newton’s equation, which conserves the total energy E and
thus generates configurations in a microcanonical ensem-
ble. We can, however, modify the equation of motion by
an artificial thermostat1–9 to sample a different distribution,
in which the total energy fluctuates, such as the canonical
distribution.

For a system with high energy barriers, the limited ex-
ploration of the energy landscape in the canonical distri-
bution is insufficient. A multicanonical ensemble,10–13 in
which the energy is broadly sampled, is more suitable, see
Fig. 1(a). The construction of the multicanonical ensemble
is nontrivial, for the flat energy distribution requires the in-
verse of the unknown density of states, 1/�(E), as the sam-
pling weight.

We here pursue the construction of multicanonical10–13

MD by using a variable temperature equal to β(E)
= dlog �/dE. We describe several thermostats to set this tem-
perature. The method is built on a previous Monte Carlo (MC)
method by Yan and de Pablo.14 Here, the sampling along
the total energy is directly incorporated into the variable-
temperature thermostat for the MD simulation.

In Sec. II, we describe the method. In Sec. III, we nu-
merically test the method in a few examples. We conclude the
article in Sec. IV.

II. METHOD

A. Microcanonical, canonical, and multicanonical
ensembles

1. Microcanonical ensemble

In classical statistical mechanics, integration of Newton’s
equation generates configurations in a microcanonical ensem-
ble under a fixed total energy E = U(q) + K(p), where U(q)
and K(p) = p2/2m are the potential and kinetic energies, re-
spectively. Thus, configurations from an ergodic trajectory

sum to the density of states,

�(E) ∝
∫

δ[E − U (q) − K(p)]dqdp

= C

∫
[E − U (q)]Nf /2−1�[E − U (q)]dq, (1)

where �(x) is the step function, which is 1 if x > 0 or 0 oth-

erwise, C = √
2mπ

Nf /2
/�(Nf /2), and δ(x) = �′(x) is the

δ-function. We have also integrated out the Nf momentum de-
grees of freedom,15∫

δ(E − U − p2/2m)dp

=
√

2mπ
Nf

�(Nf /2)
(E − U )Nf /2−1�(E − U )

with �(x) being the gamma function. For a molecular system,
Nf is three times the number of particles less the number of
conserved quantities, such as the total linear and angular mo-
menta.

The microcanonical temperature, or the derivative of the
entropy S(E) = kBlog �(E)16, 17 with kB being the Boltzmann
factor, can be evaluated as a configuration average,15, 18

β(E) ≡ d log �(E)

dE
=

〈
Nf /2 − 1

K(p)

〉
E

, (2)

where β(E) = 1/[kBT(E)] is the inverse temperature, 〈. . . 〉E

denotes an average under a fixed total energy E, and we have
used Eq. (1),

1

�(E)

d�(E)

dE

=
∫ (

Nf /2 − 1

E − U (q)

)
C[E − U (q)]Nf /2−1�[E − U (q)]

�(E)
dq

=
〈
Nf /2 − 1

K

〉
E

.

Here, we have assumed Nf > 2 so that the singularity at E
= U(q) is negligible. Other expressions for β(E) also exist,18

as shown in Appendix A.
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FIG. 1. (a) The probability distributions for the energy in the microcanonical, canonical, and multicanonical ensembles. (b) The ensemble weights in the
canonical and microcanonical ensembles.

2. Canonical ensemble

The canonical ensemble is a superposition of micro-
canonical ensembles at various E, each with a weight
exp(−βE). The overall E distribution is given by

ρ(E) ∝
∫

δ[E − H (q, p)]dqdp exp(−βE)

= �(E) exp(−βE). (3)

To realize a canonical distribution in MD, one needs
a thermostat1–9 to alter the equation of motion either
deterministically3–8 or stochastically.1, 2, 8, 9

3. Multicanonical ensemble

We now consider a generalized ensemble composed
of microcanonical ensembles with an arbitrary weight
exp[−f (E)] instead of the Boltzmann weight exp (−βE). We
approximate f (E) by a piecewise linear function on a finely
spaced grid E0, E1, . . . , En, as in Fig. 1(b). Then within each
(Ek, Ek+1), f (E) ≈ f (Ek) + f ′(Ek)(E−Ek) and the ensemble can
be treated as locally canonical with the effective temperature
being f ′(Ek).10 The constant f (Ek)−f ′(Ek)Ek does not distin-
guish configurations, and is therefore irrelevant. In the limit
of infinitesimal intervals, the local effective temperature be-
comes f ′(E).

The multicanonical ensemble is the special case of
the generalized ensemble described above, in which f (E)
= log �(E) + const., such that the E distribution

ρmuca.(E) =
∫

δ[E − H (q, p)]dqdp exp[−f (E)]

∝ �(E) exp[− log �(E)] = 1

is flat. Thus, the local temperature f ′(E) should be energy de-
pendent, and it is equal to (log �)′(E), which can be evaluated
by Eq. (2).

Thus, molecular dynamics in the multicanonical ensem-
ble can be achieved by a thermostat with an energy-dependent
target temperature f ′(E) = (log �)′(E). Below, we describe
how this can be done. As in the previous MC method,14 �(E)

is estimated from its derivative by Eq. (2) instead of from the
energy histogram.10, 12, 13 Strictly speaking, detailed balance
is violated if we constantly update (log �)′(E) by Eq. (2) in
simulation. Earl and Deem, however, showed that this prac-
tice, commonly used in the adaptive integration methods14, 19

and to be used here, satisfies balance in infinite-order Markov
chains.20 This updating practice converges in the present
application, and so the present method satisfies balance at
long times. Note also that the multicanonical ensemble here
is formulated for the total energy14 instead of the potential
energy.10, 12

B. Algorithm

We now describe an algorithm for a multicanonical MD.
The aim is to sample a flat energy distribution in a given range
(Emin, Emax). We split the range into n intervals at E0 = Emin,
E1, . . . , En = Emax, such that each (Ek, Ek+1) accumulates data
for computing the average of (Nf/2−1)/K(p) to estimate β(E)
in Eq. (2),

β̂(E) =
〈
Nf /2 − 1

K(p)

〉
Ek<E<Ek+1

. (2′)

The algorithm is as follows:

1. Integrate Newton’s equation for 	tMD.
2. Locate the interval k that contains the current total energy E (if Emin

< E < Emax) and deposit (Nf/2−1)/K(p) into the accumulator there.
3. Use Eq. (2′) to estimate β̂(E); but if the number of data points is fewer

than 100, or if E lies outside of (Emin, Emax), use a default value β̂(E)
= βd, which should correspond to an energy E ∈ (Emin, Emax).

4. Use β̂(E) in one of the variable-temperature thermostats listed below.
5. Repeat Step 1 until the simulation ends.

1. Remarks

1. We show in Appendix A that the use of the interval-
averaged formula (2′) to approximate β(E) produces no
systematic error: the estimated values of the density of
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states log �̂(Ek) = ∫ Ek β̂(E)dE at the boundaries Ek

asymptotically approach log �(Ek) for any interval size
Ek+1−Ek.

2. While the average in Eq. (2′) is invariant with respect
to the interval size, the energy range, the number of in-
tervals, and the number of data points will affect the
rate of convergence. The number of intervals should be
large enough so that the log �̂(E) is sufficiently close
to log �(E), i.e., the dotted line segments in Fig. 1(b)
closely approximate the solid curve. Furthermore, the
number of data points per interval should be sufficiently
large to provide a reliable estimate of the average.

3. In Step 3, a constant β̂(E) = βd is assumed for E outside
of (Emin, Emax) for simplicity. It, however, causes a large
discontinuity there, and a better boundary condition may
improve this. The number 100 is also arbitrary.

4. After simulation, we can recover the density of potential-
energy state g(U) = ∫

δ[U−U(q)]dq from the observed
distribution h(U) of the potential energy U by

g(U ) = h(U )
/[

C

∫ +∞

U

(E−U )Nf /2−1/�̂(E)dE

]
, (4)

see Appendix B for a proof. The denominator of
Eq. (4) can be evaluated exactly by the incomplete
gamma function,21 as log �̂(E) is piecewise linear. One
can then compute the canonical partition function Z(β)
= ∫

g(U)exp (−βU)dU, and its derivatives. Equation (4)
also applies to an �̂(E) that does not produce a flat E
distribution, see examples in Appendix A.

5. The algorithm produces a flat total-energy E dis-
tribution, but not a flat potential-energy U distribu-
tion. To roughly achieve the latter, we note ρ(E)
= ρ〈U〉E (〈U 〉E)d 〈U 〉E/dE, where

d〈U 〉E/dE = (
1
2Nf − 1

)
(〈K〉E 〈1/K〉E − 1)

= − (
1
2Nf − 1

) 〈δKδ(1/K)〉E

= (
1
2Nf − 1

) 〈δUδ(1/K)〉E .

This factor would enter the variable-temperature ther-
mostats described below either through the target
density of states �̂mod(E) = �̂(E)/(d 〈U 〉E/dE), or,
equivalently, through the target inverse temperature
β̂mod(E) = β̂(E) − d log(d 〈U 〉E/dE)/dE. This modi-
fication would lead to a flat ρ〈U〉E (〈U 〉E). In the thermo-
dynamic limit, the overall potential-energy distribution
h(U) would also be flat, as h(U ) ≈ ρ〈U〉E (U ). For finite
systems, h(U) may be flatter with �̂mod(E) and β̂mod(E)
than with �̂(E) and β̂(E).

C. Variable-temperature thermostats

The thermostats for a canonical ensemble need to be
modified as follows for a multicanonical MD. We list a few
examples below. The dimension is denoted by d, which is
usually 3.

1. Nosé-Hoover chain thermostat

The Nosé-Hoover chain equations5, 8 for a canonical en-
semble are

q̇ = p/m, ṗ = F − ζ1p, ζ̇1 = (p2/m − Nf /β)/Q1 − ζ2ζ1,

ζ̇k =(
Qk−1ζ

2
k−1−1/β

)
/Qk−ζk+1ζk, (for k=2, . . . , M−1),

ζ̇M = (
QM−1ζ

2
M−1 − 1/β

)
/QM, (5)

where ζ k are the thermostat variables and Qk are their masses.
The corresponding Liouville’s equation

∂ρ/∂t + ∂(q̇ρ)/∂q + ∂(ṗρ)/∂p +
∑M

k=1
∂(ζ̇kρ)/∂ζk = 0

(6)

has a stationary (∂ρ/∂t = 0) solution

ρ(q, p, {ζk}) ∝ exp
[
−βU (q)−βp2/2m−β

∑M

k=1
Qkζ

2
k /2

]
,

which is indeed canonical.5

For a multicanonical ensemble, we change the equation
for ζ̇1 in Eq. (5) to

ζ̇1 = {[β̂(E)/β0]p2/m − Nf /β0}/Q1 − ζ2ζ1, (5′)

and we replace the β in the equations for ζ̇k , k ≥ 2, by β0,
such that the new stationary solution of Eq. (6) is

ρ(q, p, {ξk}) ∝ exp
{

− log �̂[U (q) + p2/2m]

−β0

∑M

k=1
Qkζ

2
k

/
2
}
, (7)

where β0 is a reference inverse temperature, against which the
set point of the system’s inverse temperature is scaled in the
term in braces in Eq. (5′). That is, with the use of β̂(E) in
Eq. (5′), the stationary distribution is the desired Eq. (7), no
matter the value of β0. One expects that β0 values near the
average of β̂(E) will be efficient for sampling.

We recover the original Nosé-Hoover thermostat by set-
ting ζ 2 = 0, and removing the equations for ζ̇k with k ≥ 2 and
for ζ̇M .

2. Velocity-rescaling thermostat

The velocity-rescaling thermostat9 achieves a canonical
distribution by re-sampling the distribution of the total energy
E under fixed q coordinates,

ρ(E)dE ∝ [E − U (q)]Nf /2−1 exp(−βE)dE,

cf. Eqs. (1) and (3). The change E → E′, hence K → K′, is re-
alized by scaling the velocity or momentum: p → √

K ′/Kp,
for U(q) is fixed. The kinetic energy is randomly updated and
follows the Langevin equation9

dK/dt = 1
2Nf /β − K +

√
2K/βξ, (8)

where ξ is a Gaussian white noise that satisfies 〈ξ (t)ξ (t′)〉
= δ(t−t′).

For a multicanonical ensemble, we modify Eq. (8) to

dK/dt = 1
2Nf /β0 − [β̂(E)/β0]K +

√
2K/β0ξ, (8′)
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such that the corresponding Fokker-Planck equation

∂ρ/∂t + ∂
({

1
2Nf − [β̂(E)/β0]K

}
ρ
)
/∂K

−∂2(Kρ/β0)/∂K2 = 0

has the desired stationary solution ρ(K) ∝ KNf /2−1/

�̂(U + K). Here, β0 is a reference inverse temperature.
Note that Eq. (8) or (8′) can be integrated with a different

time step from the MD one.

3. Monte-Carlo velocity-rescaling thermostat

We can also replace Eq. (8′) by an explicit MC move in
the E or K space.14 We first propose a change of log K by δ

∈ (−	, 	), then accept the new K′ = Keδ by

A(K → K ′) = min

{
1,

�̂(K + U )

�̂(K ′ + U )

(
K ′

K

)Nf /2
}

.

If K′ is accepted, it is also realized as a velocity rescaling:
p → √

K ′/Kp.

4. Langevin dynamics

Langevin dynamics1, 17 modifies Newton’s equation of
motion by introducing a velocity damping term and a thermal
noise,

q̇ = p/m, ṗ = F − ζp +
√

2mζ/βξ, (9)

where ζ is a damping constant and ξ is a Gaussian white noise
satisfying 〈ξ i(t)ξ j(t′)〉 = δ(t−t′)δij.

For a multicanonical ensemble, we change Eq. (9) to

q̇ = p/m, ṗ = F − [β̂(E)/β0]ζp +
√

2mζ/β0ξ, (9′)

such that the corresponding Fokker-Planck equation

∂ρ/∂t + ∂[(p/m)ρ]/∂q + ∂{[F − (β̂(E)/β0)ζp]ρ}/∂p

−∂2[(mζ/β0)ρ]/∂p2 = 0

has the desired stationary (∂ρ/∂t = 0) solution ρ(q, p)
∝1/�̂[U (q) + p2/2m]. Here, β0 is a reference inverse
temperature.

5. Andersen thermostat

In the Andersen thermostat,2, 8 we replace the velocity or
momentum pold

i of a random particle i by a Gaussian random
vector drawn from the Maxwell distribution,

pMaxwell
(
β; pnew

i

) = (β/2πm)d/2 exp
[ − β

(
pnew

i

)2
/2m

]
.

(10)

For a multicanonical ensemble, we treat pnew
i from

Eq. (10), with β replaced by β̂(E), as a MC trial, and accept
it by the Metropolis probability

A
(
pold

i → pnew
i

) = min

{
1,

�̂(E)

�̂(E′)

pMaxwell
(
β̂(E′); pold

i

)
pMaxwell

(
β̂(E); pnew

i

)
}

,

(11)

where E′ = E + (pnew
i )2/2m − (pold

i )2/2m and the two
Maxwell factors pMaxwell(. . . ), defined in Eq. (10), offset
the a priori sampling bias. For the canonical ensem-
ble, β̂(E) = β̂(E′) = β, �̂(E)/�̂(E′) = exp[β(pold

i )2/2m

− β(pnew
i )2/2m], and Eq. (11) yields unity so that the trial is

always accepted.

D. Volume distribution

We can extend the above sampling strategy to explore
a broad volume distribution, which is useful in studying a
liquid-gas phase transition.22, 23 A flat volume distribution can
be inefficient, however, as drastic free energy changes occur
only at a high-density, or small-volume, regime. We there-
fore sample the distribution ρ(V ) ∝ 1/V α . To sample a flat
density distribution, ρn(n) = const., with n = N/V , we use
α = 2, because

ρ(V )dV = ρn(n)|dn| = ρn(n)NdV /V 2 ∝ (1/V 2)dV.

To sample the distribution ρ(V ) ∝ V −α , we replace
the constant target pressure in an isothermal-isobaric
simulation2, 5, 7, 8, 24–26 by the variable

p̂(V ) = 〈pint.(q, p)V α〉Vk<V <Vk+1

〈V α〉Vk<V <Vk+1

, (12)

where pint.(q, p) = (p2/m + F · q)/(d · V )−dφtail(V )/dV ,
where φtail(V ) is the energy tail correction, such that the
potential energy U (q, V ) = Utrunc.(q) + φtail(V ).7, 8, 24–26

The weight V α in Eq. (12) ensures unbiased free en-
ergy F̂ (Vk) = − ∫ Vk

Vmin
p̂(V )dV for a finite interval width

Vk+1 − Vk , see Appendix A.

1. Nosé-Hoover chain barostat

To sample ρ(V ) ∝ V −α , we modify the Nosé-Hoover
chain5, 7, 8 equation for an isothermal-isobaric ensemble to

q̇ = p/m + ηq, ṗ = F − (ζ + η)p, V̇ = dηV,

η̇ = {[pint.(q, p) − p̂(V )]V + (1 − α)/β}d/W−ζ1η,

ζ̇1 = [p2/m + Wη2 − (Nf + 1)/β]/Q1 − ζ2ζ1,

ζ̇k =(
Qk−1ζ

2
k−1− 1/β

)
/Qk − ζk+1ζk, (for k=2, . . . , M−1),

ζ̇M = (
QM−1ζ

2
M−1 − 1/β

)
/QM,

(13)

where η and ζ k are the variables for the barostat and ther-
mostat, respectively, with W and Qk being their respective
masses. The corresponding Liouville’s equation

∂ρ/∂t + ∂(q̇ρ)/∂q + ∂(ṗρ)/∂p + ∂(η̇ρ)/∂η

+
∑M

k=1
∂(ζ̇kρ)/∂ζk + ∂(V̇ ρ)/∂V = 0

has the desired stationary solution

ρ(q, p, η, {ζk}, V ) ∝ exp

{
− β[U (q, V ) + p2/2m + Wη2/2

+
∑M

k=1
Qkζ

2
k

/
2 − F̂ (V )]

}
V −α,
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where F̂ (V ) = − ∫ V
p̂(V ′)dV ′ is the estimated Helmholtz

free energy. The term 1−α in the equation for η̇ accounts for
the ensemble weight V −α . We recover an isothermal-isobaric
sampling by setting p̂(V ) to a constant and α → 0. The 1−α

→ 1 corrects the small error in the original Nosé-Hoover
barostat.5, 7, 8

We recover the Nosé-Hoover case by setting ζ 2 = 0, and
removing the equations for ζ̇k with k ≥ 2 and for ζ̇M .

2. Langevin barostat

Alternatively, the pressure can be controlled by a
Langevin equation26 separate from the thermostat. The
Langevin barostat is a stochastic version of Eq. (13),

q̇ = p/m + ηq, ṗ = F − ηp, V̇ = dηV,

η̇ = {[pint.(q, p) − p̂(V )]V + (1 − α)/β}d/W − ζη

+
√

2ζ/(βW )ξ, (14)

where ξ is a Gaussian white noise satisfying 〈ξ (t)ξ (t′)〉
= δ(t−t′), and ζ and W are two constants. The Fokker-Planck
equation

∂ρ/∂t + ∂(q̇ρ)/∂q + ∂(ṗρ)/∂p + ∂(V̇ ρ)/∂V

+ ∂[(η̇)det.ρ]/∂η − ∂2[(ζ/βW )ρ]/∂η2 = 0,

where (η̇)det. = {[pint.(q, p) − p̂(V )]V + (1 − α)/β}d/W

− ζη, admits the desired stationary distribution,

ρ(q, p, η, V ) ∝ exp{−β[U (q, V )

+ p2/2m + Wη2/2 − F̂ (V )]}V −α.

3. Explicit Monte-Carlo sampling

The above Langevin equation can be replaced by a MC
move:8, 22 we first propose a change of log V 8 by δ ∈ (−	, 	)
and then accept the new V ′ = V eδ by

A(V → V ′) = min

{
1,

exp{−β[U ( d
√

V ′/V q, V ′) + ( d
√

V/V ′p)2/2m − F̂ (V ′)]}V ′−α

exp{−β[U (q, V ) + p2/2m − F̂ (V )]}V −α

}
. (15)

If the move is accepted, we change the coordinates as
q → d

√
V ′/V q8 and momenta as p → d

√
V/V ′p. The phase-

space volume element dqdp is conserved.

III. EXAMPLES

A. A Flat energy distribution

We tested the method in the N = 108 particle Lennard-
Jones system.8 The potential was cutoff at rc = 2.5 Å and
shifted to zero. The density was n = N/V = 0.7. Each tra-
jectory was integrated for 5 × 108 steps and the time step was
	tMD = 0.001 unless specified otherwise. The energy E range
was (−4N, 2N) and the interval was 0.02N. The default in-
verse temperature βd for E outside of the range or insufficient
data and reference inverse temperature β0 were both 1.0.

The energy distributions ρ(E) from simulations us-
ing several variable-temperature thermostats are shown in
Figs. 2(a)–2(e). The flatness of the energy distributions ρ(E)
helped detect if the variable-temperature thermostat was cor-
rect. The modifications in Sec. II C were necessary to pro-
duce flat distributions. That is, if the β was simply replaced
by β̂(E) in Eqs. (5), (8), (9), and (10), flat energy distributions
were not achieved, as shown in Figs. 2(a), 2(c), 2(e), and 2(f),
respectively.

The thermostat equations are stiff if the mass Q1 in
the Nosé-Hoover chain is not extensive. An efficient Q1

should be proportional to the number Nf of degrees of
freedom,4, 6, 25 which can be seen from the scales of the equa-
tion for ζ̇1 in Eq. (5′). From the left side, we have ρ(ζ1)

∝ exp(−β0Q1ζ
2
1 /2) by Eq. (7). Thus, ζ1 ∝ 1/

√
Q1 and ζ̇1

∼ ζ1/	tMD ∼ 1/(	tMD
√

Q1). From the right side of Eq. (5′),
[β̂(E)/β0]p2/m − Nf /β0 ∼ √

Nf , since it is proportional
to the standard deviation of p2/m. Thus, the right side is
∼ √

Nf /Q1. Equating the two results, we find
√

Q1/	tMD

∼ √
Nf . The other Qk, k ≥ 2, should be of order unity.6, 25

With Q1 = 10, which was much smaller than Nf, visible devi-
ations from the flat distribution can be seen, but a smaller MD
time step 	tMD recovered a flat distribution, see Fig. 2(f), as
it must by Eq. (7).

The approximate15 temperature formula β̃(E)
= Nf /〈2K〉

E
14, 27 did not produce a flat energy distri-

bution, but rather a ρ(E) ∝ 1/〈K〉E, as shown in Fig. 2(d). This
is because β̃(E) corresponds to a modified density of states
weighted by 2K, as discussed in Appendix A.

B. Structure-based protein model

As an application of multicanonical MD, we studied the
protein villin headpiece, Protein DataBank code: 1VII,28, 29 by
a simplified structure-based model.30–32 Details of the model
are described in Appendix C. Each trajectory was run for 2
× 109 steps with 	tMD = 0.002. We used the MC velocity-
rescaling variable-temperature thermostat with 	 = 0.05. We
show below that the thermodynamics of the model depends
critically on the cutoff distance rc that defines contacts; the
interaction is attractive between contact atoms but repulsive
otherwise.

As shown in Fig. 3(a), the microcanonical tem-
perature functions β(E) under several different rc were
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FIG. 2. Multicanonical molecular dynamics on a Lennard-Jones system by the variable-temperature thermostats discussed in Sec. II C. (a)–(f) The probability
distributions for the energy in the system for different methods. These variable-temperature thermostats produce flat energy distributions. Simple replacement
of β with β̂(E) in the canonical thermostat equations, labeled “Unmodified,” does not produce flat energy distributions. The parameters are (a) Q1 = 300,
(c) 	VR = 0.01, and (e) ζ = 3. For the Nosé-Hoover chain variable-temperature thermostat in (a) and (b), M = 5 and Qk = 1 for k ≥ 2. Note in (b) the
importance of a small time step if the thermostat mass Q1 is too small. In panel (d), the alternative expression β̃(E) = Nf /〈2K〉E with 	 = 0.3 produced a
non-flat energy distribution, characterized in Appendix A.
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FIG. 3. Simulations on the villin headpiece by a structure-based model. (a) Estimated inverse temperature, β̂(E), as a function of energy for different cutoffs,
rc. The default inverse temperature βd and reference inverse temperature β0 were the same, and they were set to 1.111 for rc = 5 Å, 0.909 for rc = 6 Å, 0.833
for rc = 6.5 Å, 0.667 for rc = 7 Å, and 0.5 for rc = 8 Å. (b) The probability distribution for the energy in the system. (c) The values of β̂(E) (solid, red), β∗

E

(dashed), and − log �̂(E) + β∗
EE (dotted, blue). (d) The values of log g(U) (solid, red) and − log g(U ) + β∗

UU (dotted, blue). Panels (b)-(d) were obtained from
the simulation with rc = 8 Å.
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FIG. 4. Molecular dynamics with a flat density distribution on a Lennard-Jones system. (a) Flat density distributions for three different variable-pressure
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V (dashed), and Ĝ(V ) = F̂ (V ) + p∗
V V (thick lines) for the three barostats. For the Langevin and MC variable-

pressure barostats, velocity-rescaling was used as the independent thermostat with 	tVR = 0.01.

similar to pressure-volume isotherms around a liquid-gas
transition in a simple fluid.17, 33 The back-bending S-loop34

that signifies a first-order phase transition occurred only when
rc ≥ 7 Å. The sensitivity to rc may explain that both the
presence and absence of S-loop were previously observed in
similar models.13, 35 A strong first-order transition in the en-
ergy space may be absent with the common definitions of
contacts,31, 32, 36 whose equivalent rc were about 4 to 5 Å.

As shown in Fig. 3(b), the total-energy distribution was
flat. For larger models with higher energy barriers, the mod-
ification described in Remark 5 of Sec. II B, which will ap-
proximately produce a flat potential-energy histogram, may
be more suitable.

For rc > 6.5 Å, the energy distributions ρ(E) around
the transition temperature β∗

E were bimodal. Here, β∗
E was

defined as the temperature at which the two modes share the
same height. See Fig. 3(c) for the case of rc = 8 Å. The free
energy profile − log �̂(E) + β∗

EE = ∫ E [β∗
E − β̂(E′)]dE′ in-

deed had two basins.
We computed the density of potential-energy state g(U)

by the reweighting formula (4). The transition temperature
β∗

U determined from g(U) was similar to β∗
E , see Fig. 3(d).

The free energy profile − log g(U ) + β∗
UU along U showed a

higher barrier than that along − log �̂(E) + β∗
EE.

C. Flat density distribution

We tested the extension in Sec. II D for the flat density
distribution also on the 108 particle Lennard-Jones system.
The pair potential was cutoff at half-box length to facilitate
volume change moves.8 The density range was (0.05, 0.75)
with a spacing 0.002. The default pressure pd for a density
outside of the range or insufficient data was 0.1. T = 1.2. Each
trajectory was run for 4 × 108 steps with 	tMD = 0.001.

The density distribution, pressure-density curves, and
free energy profile are shown in Fig. 4 for the Nosé-Hoover
chain equation (13), Langevin equation (14), and MC equa-

tion (15) barostats. The density distributions were flat. The
obtained transition pressures were 0.0696, 0.0695, and 0.0697
for the Nosé-Hoover chain, Langevin, and MC barostats, re-
spectively. The free energy profiles obtained at the transition
pressures also agreed with one another, see Fig. 4(b).

IV. DISCUSSION AND CONCLUSION

A multicanonical, or flat-energy-distribution, molecu-
lar dynamics can be conveniently realized by a variable-
temperature thermostat. Similarly, a flat-density-distribution
MD can be realized by a variable-pressure barostat. The
method is easy to implement with minimal modifications
from a regular constant temperature or volume simulation.
We have demonstrated the method on a Lennard-Jones sys-
tem and a structure-based model of the villin headpiece.

The method computes the density of states �(E)14 in-
stead of the density of potential-energy states g(U).10, 12 The
reweighting formula (4) is used to recover g(U). In this way,
thermal averages in the canonical ensemble are computed af-
ter simulation.

The method is somewhat more robust, in terms of achiev-
ing a flat energy distribution, with a smaller energy interval
	E = Ek+1 − Ek, although it is formally correct for any 	E,
as shown in Appendix A. A smaller interval also yields a
finer �̂(Ek), but may slow down the on the fly construction
of the ensemble weight. The integral-identity technique,29, 37

which allows borrowing data from neighboring intervals,
and the adaptive averaging technique from the continuous
tempering29 may help improve convergence.

The multicanonical ensemble is commonly used in
Monte Carlo and molecular dynamics simulations to over-
come energy barriers. We here have described a number
of variable-temperature thermostats and variable-pressure
barostats to achieve flat energy or density distributions.38 We
expect these methods may prove useful in simulating systems
with complex energy landscapes.
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APPENDIX A: UNBIASED DENSITY OF STATES
AT INTERVAL BOUNDARIES

We show here that the values of the density of states
�̂(Ek) = ∫ Ek β̂(E)dE at the boundary points Ek are unbiased,
although β̂(E) is an approximate average of β(E) over finite
intervals (Ek, Ek+1). This is because29

�(Ek+1)

�̂(Ek+1)
− �(Ek)

�̂(Ek)
=

∫ Ek+1

Ek

d

dE

[
�(E)

�̂(E)

]
dE

=
∫ Ek+1

Ek

[(log �)′(E) − (log �̂)′(E)]
�(E)

�̂(E)
dE

= hk

〈
Nf /2 − 1

K(p)
− β̂(E)

〉
Ek<E<Ek+1

,

where we have used (log �)′(E) = 〈(Nf/2−1)/K(p)〉E and
(log �̂)′(E) = β̂(E). The ratio �(E)/�̂(E) = ∫

δ[E
− H (q, p)]dqdp/�̂(E) is the distribution density of the
overall E distribution, and we have defined hk ≡ ∫ Ek+1

Ek

�(E)/�̂(E)dE. Since the right hand side is zero by Eq. (2′),
the left side vanishes. So �̂(Ek+1)/�̂(Ek) = �(Ek+1)/�(Ek),
and by recursion, �̂(Ek)/�̂(E0) = �(Ek)/�(E0). Thus,
�̂(Ek) differs from �(Ek) only by a multiple.

The alternative formulas for β̂(E): β̃(p)(E) = Nf /

〈2K(p)〉Ek<E<Ek+1 and β̃(F)(E) = 〈∇2U 〉Ek<E<Ek+1/

〈F · F〉Ek<E<Ek+1 in Refs. 14 and 27, have a similar property,
although they do not produce flat E distributions, even with
infinitely small intervals. To see this, consider an arbitrary
vector field v = v(p, q). We define

�D(E) ≡
∫

(v · ∇H )δ[E−H (q, p)]dqdp=�(E) 〈v · ∇H 〉E,

�N (E) ≡
∫

(∇ · v)δ[E − H (q, p)]dqdp = �(E) 〈∇ · v〉E .

Now integration by parts yields d�D(E)/dE = �N(E)18 and

�D(Ek+1)

�̂(Ek+1)
− �D(Ek)

�̂(Ek)

=
∫ Ek+1

Ek

[
�N (E)

�(E)
− (log �̂)′(E)

�D(E)

�(E)

]
�(E)

�̂(E)
dE

= hk[〈∇ · v〉Ek<E<Ek+1
− β̂(E) 〈v · ∇H 〉Ek<E<Ek+1

].

Thus, if we set β̂(E) = 〈∇ · v〉Ek<E<Ek+1
/〈v · ∇H 〉Ek<E<Ek+1

,
�̂(Ek) will asymptotically approach the modified density of
states �D(Ek) instead of �(Ek). Accordingly, the converged
energy distribution ρ(E) ∝ �(E)/�D(E) = 1/〈v · ∇H 〉E is
not necessarily flat, and the resulting �̂(E) should be divided
by 〈v · ∇H 〉E in order to recover �(E).

The two alternative mean force formulas mentioned
above correspond to v(p) ≡ p with v(p) · ∇H = p2/m

and v(F) ≡ F with v(F) · ∇H = −F · F, respectively. Thus,

the overall energy distributions ρ(p)(E) ∝ 1/〈p2/m〉E and
ρ(F)(E) ∝ 1/〈F · F〉E are not flat.

We can force a flat distribution by using a “normalized”
vector field. For an arbitrary v, we construct v′ = v/(v · ∇H ),
then18

β̂(E) = 〈∇ · v′〉Ek<E<Ek+1 = 〈∇ · [v/(v · ∇H )]〉Ek<E<Ek+1

yields the unbiased �̂(Ek) and a flat distribution, since
〈v′ · ∇H〉E = 1 and �D(E) = �(E). The above two examples
for v(p) = p and v(F) = F, after the normalization, become
Eq. (2′) and β̂(E) = 〈∇ · [F/(F · ∇U )]〉Ek<E<Ek+1

,18

respectively.
We can show Eq. (12) in a similar way. We define the

canonical partition function at a fixed volume V as

Q(V ) = exp[−βF (V )] =
∫

exp[−βHV (q, p)]dqdp,

and its estimate

log Q̂(V ) = −βF̂ (V ) = β

∫ V

p̂(V ′)dV ′.

Then

Q(Vk+1)

Q̂(Vk+1)
− Q(Vk)

Q̂(Vk)

=
∫ Vk+1

Vk

d

dV

[
Q(V )

Q̂(V )

]
dV

= −β

∫ Vk+1

Vk

[F ′(V ) − F̂ ′(V )]V α Q(V )

Q̂(V )

dV

V α

= −β

∫ Vk+1

Vk

[F ′(V ) − F̂ ′(V )]V αw(V )dV

= βhk 〈[p(V ) − p̂(V )]V α〉Vk<V <Vk+1
,

where w(V ) ≡ ∫
exp[−βHV (q, p)]dqdp/[Q̂(V )V α] = Q(V )/

[Q̂(V )V α] is the overall volume distribution, and
we have defined hk ≡ ∫ Vk+1

Vk
w(V )dV . Thus, in or-

der for Q̂(Vk) to converge to Q(Vk), we need
p̂ = 〈p(V )V α〉Vk<V <Vk+1

/〈V α〉Vk<V <Vk+1
, which becomes

Eq. (12) by p(V ) = 〈pint.(q, p)〉V .

APPENDIX B: REWEIGHTING FOR THE DENSITY
OF POTENTIAL-ENERGY STATES

To prove Eq. (4), we first write down the distribution
density of the potential energy h(U) in the multicanonical
ensemble,

h(U ) =
∫ +∞

−∞

( ∫
δ[E − U (q) − K(p)]

× δ[U − U (q)]dqdp

)
[1/�̂(E)]dE.

So

h(U ) =
∫ +∞

−∞

(
C

∫
[E − U (q)]Nf /2−1�[E − U (q)]
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× δ[U − U (q)]dq
)

[1/�̂(E)]dE

=
∫ +∞

−∞

(∫
δ[U − U (q)]dq

)

×C(E − U )Nf /2−1�(E − U )/�̂(E)dE

= g(U )
∫ +∞

U

C(E − U )Nf /2−1/�̂(E)dE,

where we have integrated out momenta in the first step,
replaced U(q) by U in the second, and used g(U)
= ∫

δ[U−U(q)]dq in the last. Dividing both sides by the
integral yields Eq. (4).

APPENDIX C: STRUCTURE-BASED PROTEIN MODEL

The protein model was described in Refs. 31 and 32; we
include it here for completeness. The model includes alpha-
carbon atoms only, and builds a potential energy based on the
geometry of a given protein structure,

U =
∑
bonds

kb(b − b0)2 +
∑

angles

kθ (θ − θ0)2

+
∑

dihedrals
n=1,3

k(n)
ϕ {1 − cos[n(ϕ − ϕ0)]}

+
∑

contacts
i<j−3

ε

[
5

(
σij

rij

)12

− 6

(
σij

rij

)10
]

+
∑

notcontacts
i<j−3

ε

(
C

rij

)12

,

where b and b0 are the bond lengths of successive atoms along
the chain in the given configuration and the reference values,
respectively; similarly, θ and θ0 are the angles of three succes-
sive atoms, and ϕ and ϕ0 are the dihedrals of four successive
atoms. For non-bonded interactions, we distinguish pairs of
contact and non-contact atoms; in the former case, we apply
the fourth term with σ ij being the distance between i and j
in the reference structure, while in the latter case, we apply
the last term. We used the following parameters: kb = 100,
kθ = 20, k(1)

ϕ = 1, k(3)
ϕ = 0.5, and C = 4.0 Å.

We used a simpler criterion than the original one31, 36 to
define contact atoms: in the reference structure, if any two
non-hydrogen atoms from two different residues have a dis-
tance rij < rc, the corresponding alpha-carbon atoms are con-
tacts. Note that Kouza et al.32 used the distances between
alpha-carbon, instead of non-hydrogen, atoms to define con-
tacts. The contacts produced by our criterion appeared to be
more similar to those yielded by the CSU server.36
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