512 research outputs found

    Density-functional study of defects in two-dimensional circular nematic nanocavities

    Full text link
    We use density--functional theory to study the structure of two-dimensional defects inside a circular nematic nanocavity. The density, nematic order parameter, and director fields, as well as the defect core energy and core radius, are obtained in a thermodynamically consistent way for defects with topological charge k=+1k=+1 (with radial and tangential symmetries) and k=+1/2k=+1/2. An independent calculation of the fluid elastic constants, within the same theory, allows us to connect with the local free--energy density predicted by elastic theory, which in turn provides a criterion to define a defect core boundary and a defect core free energy for the two types of defects. The radial and tangential defects turn out to have very different properties, a feature that a previous Maier--Saupe theory could not account for due to the simplified nature of the interactions --which caused all elastic constants to be equal. In the case with two k=+1/2k=+1/2 defects in the cavity, the elastic r\'egime cannot be reached due to the small radii of the cavities considered, but some trends can already be obtained.Comment: 9 figures. Accepted for publication in liquid crystal

    Demixing and orientational ordering in mixtures of rectangular particles

    Get PDF
    Using scaled-particle theory for binary mixtures of two-dimensional hard particles with rotational freedom, we analyse the stability of nematic phases and the demixing phase behaviour of a variety of mixtures, focussing on cases where at least one of the components consists of hard rectangles or hard squares. A pure fluid of hard rectangles may exhibit, aside from the usual uniaxial nematic phase, an additional (tetratic) oriented phase, possessing two directors, which is the analogue of the biaxial or cubatic phases in three- dimensional fluids. There is computer simulation evidence that the tetratic phase might be stable with respect to phases with spatial order for rectangles with low aspect ratios. As hard rectangles are mixed with other particles not possessing stable tetratic order by themselves, the tetratic phase is destabilised, via a first- or second-order phase transition, to uniaxial nematic or isotropic phases; for hard rectangles of low aspect ratio tetratic order persists in a relatively large range of volume fractions. The order of these transitions depends on the particle geometry, dimensions and thermodynamic conditions of the mixture. The second component of the mixture has been chosen to be hard discs or disco-rectangles, the geometry of which is different from that of rectangles, leading to packing frustration and demixing behaviour, or simply rectangles of different aspect ratio. These mixtures may be good candidates for observing thermodynamically stable tetratic phases in monolayers of hard particles. Finally, demixing between fluid (isotropic--tetratic or tetratic--tetratic) phases is seen to occur in mixtures of hard squares of different sizes when the size ratio is sufficiently large.Comment: 27 pages, 9 figure

    Evolution of the seroprevalence of pestivirus and respiratory viral infections in Spanish feedlot lambs

    Get PDF
    The presence of respiratory viruses and pestiviruses in sheep has been widely demon-strated, and their ability to cause injury and predispose to respiratory processes have been proven experimentally. A longitudinal observational study was performed to determine the seroprevalence of bovine parainfluenza virus type 3 (BPIV-3), bovine respiratory syncytial virus (BRSV), bovine herpesvirus type 1 (BHV-1) and pestiviruses in 120 lambs at the beginning and the end of the fattening period. During this time, the animals were clinically monitored, their growth was recorded, and post-mortem examinations were performed in order to identify the presence of pneumonic lesions in the animals. Seroconversion to all viruses tested except BHV-1 was detected at the end of the period. Initially, BPIV-3 antibodies were the most frequently found, while the most common seroconversion through the analysed period occurred to BRSV. Only 10.8% of the lambs showed no detectable levels of antibodies against any of the tested viruses at the end of the survey. In addition, no statistical differences were found in the presentation of respiratory clinical signs, pneumonic lesions nor in the production performance between lambs that seroconverted and those which did not, except in the case of pestiviruses. The seroconversion to pestiviruses was associated with a reduction in the final weight of the lambs

    Capillary and anchoring effects in thin hybrid nematic films and connection with bulk behavior

    Full text link
    By means of a molecular model, we examine hybrid nematic films with antagonistic anchoring angles where one of the surfaces is in the strong anchoring regime. If anchoring at the other surface is weak, and in the absence of wetting by the isotropic phase, the anchoring transition may interact with the capillary isotropic-nematic transition in interesting ways. For general anchoring conditions on this surface we confirm the existence of the step-tilt, biaxial phase and the associated transition to the linear, constant-tilt-rotation, configuration. The step-like phase is connected with the bulk isotropic phase for increasing film thickness so that the latter transition is to be interpreted as the capillary isotropic-nematic transition. Finally, we suggest possible global surface phase diagrams.Comment: 7 pages, 5 figure

    Properties of patchy colloidal particles close to a surface: a Monte Carlo and density functional study

    Get PDF
    We investigate the behavior of a patchy particle model close to a hard-wall via Monte Carlo simulation and density functional theory (DFT). Two DFT approaches, based on the homogeneous and inhomogeneous versions of Wertheim's first order perturbation theory for the association free energy are used. We evaluate, by simulation and theory, the equilibrium bulk phase diagram of the fluid and analyze the surface properties for two isochores, one of which is close to the liquid side of the gas-liquid coexistence curve. We find that the density profile near the wall crosses over from a typical high-temperature adsorption profile to a low-temperature desorption one, for the isochore close to coexistence. We relate this behavior to the properties of the bulk network liquid and find that the theoretical descriptions are reasonably accurate in this regime. At very low temperatures, however, an almost fully bonded network is formed, and the simulations reveal a second adsorption regime which is not captured by DFT. We trace this failure to the neglect of orientational correlations of the particles, which are found to exhibit surface induced orientational order in this regime

    Web based system architecture for long pulse remote experimentation

    Get PDF
    Remote experimentation (RE) methods will be essential in next generation fusion devices. Requirements for long pulse RE will be: on-line data visualization, on-line data acquisition processes monitoring and on-line data acquisition systems interactions (start, stop or set-up modifications). Note that these methods are not oriented to real-time control of fusion plant devices. INDRA Sistemas S.A., CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas) and UPM (Universidad Politécnica de Madrid) have designed a specific software architecture for these purposes. The architecture can be supported on the BeansNet platform, whose integration with an application server provides an adequate solution to the requirements. BeansNet is a JINI based framework developed by INDRA, which makes easy the implementation of a remote experimentation model based on a Service Oriented Architecture. The new software architecture has been designed on the basis of the experience acquired in the development of an upgrade of the TJ-II remote experimentation system

    Chronic proliferative rhinitis in sheep: An update

    Get PDF
    Chronic proliferative rhinitis (CPR) is a slow and progressive upper respiratory tract disease of sheep with a poor prognosis for affected animals. It causes a proliferative inflammation of the ventral nasal turbinates with uni or bilateral affection that may totally obstruct the nasal cavity. Salmonella enterica subspecies diarizonae serovar 61:k:1, 5, (7) has been associated with the disease. This microorganism, host-adapted of tonsils and nasal cavity of sheep, has been isolated in pure culture from the nasal cavity in all reported cases of CPR. However, its etiopathogenesis, mechanism of transmission and its involvement with the disease are still unknown. The present article focuses on describing the current knowledge about this disease gathering the published information and offering some new data on the latest research carried out on chronic proliferative rhinitis in sheep
    corecore