
Web based system architecture for long pulse remote experimentation 
E. de las Heras3'*, D. Lastraa,J. Vegab, R. Castrob, M. Ruizc, E. Barrerac 

a INDRA Sistemas, S.A. Unidad de Sistemas de Control de Energia, Direction de Tecnologia Energetica, Madrid, Spain 
b Asociacion EURATOM/CIEMATpara Fusion, Madrid, Spain 
c Universidad Politecnica de Madrid, Departamento de Sistemas Eiectronicos y de Control, Madrid, Spain 

A R T I C L E I N F O A B S T R A C T 

Keywords: 
Long pulse 
JINI technology 
JNLP 
BeansNet(C)INDRA 
SOA 

Remote experimentation (RE) methods will be essential in next generation fusion devices. Requirements 
for long pulse RE will be: on-line data visualization, on-line data acquisition processes monitoring and on­
line data acquisition systems interactions (start, stop or set-up modifications). Note that these methods 
are not oriented to real-time control of fusion plant devices. 

INDRA Sistemas S.A., CIEMAT (Centro de Investigaciones Energeticas Medioambientales y Tecnolog-
icas) and UPM (Universidad Politecnica de Madrid) have designed a specific software architecture for 
these purposes. The architecture can be supported on the BeansNet platform, whose integration with an 
application server provides an adequate solution to the requirements. BeansNet is a JINI based framework 
developed by INDRA, which makes easy the implementation of a remote experimentation model based 
on a Service Oriented Architecture. The new software architecture has been designed on the basis of the 
experience acquired in the development of an upgrade of the TJ-II remote experimentation system. 

1. Remote Experimentation overview 

Geographical situation of a large international research facility 
should not be a drawback for collaboration of research personnel, 
despite of his work place.This is the case of the large fusion research 
facilities, as ITER. These installations should give remote access 
mechanisms to the acquisition devices, in a time scale compatible 
with the physical process. These access mechanisms could also be 
used from local experimentation sites, with any type of communi­
cations: Local or Wide Area Networks (LAN, WAN), Virtual Private 
Networks (VPN), etc. 

Long pulse tokamak fusion devices, like ITER, present new chal­
lenges for Remote Experimentation (RE), as it gives the opportunity 
for interaction with the experiment during the shots. In this con­
text, long pulse fusion devices demand a type of open system 
architecture that could give to remote research applications a safe 
and effective on-line access to the experiments in the same time 
they are happen. This type of architecture should offer adequate 
interfaces in order to: 

• Configure the acquisition devices. 
• On-line monitoring of acquisition systems. 
• On-line access to acquired data and diagnostics. 
• Handle the acquisition devices during the experiments. 

Note that these functionalities are not oriented to real-time con­
trol of fusion plant devices. 

Security is a particular concern; as all these features should be 
available only in the case of remote users and applications have the 
appropriate access rights to specific devices and data. 

Furthermore, in addition to remote access to acquisition sys­
tems, this architecture must meet a number of typical requirements 
for distributed applications and, in general, enterprise applications: 

Security: access authentication and authorization. 
Scalability: large growing capacity to follow the evolution of the 
experimental environment. 
Flexibility: adaptation capacity to different acquisition technolo­
gies, security platforms, access modes, etc. 
Technology platform independence: transparent operation 
over different HW (Hardware) and OS (Operating System) 
platforms. 
On-line messaging: application-to-application messaging for 
monitoring, notification, etc. 

2. REAL: Remote Experimentation Architecture for long 
pulse 

In a simple view, the experimentation environment of fusion 
facilities leans on the acquisition systems (supported by acquisi­
tion hosts), that can be accessed through the plant network from 
different access services. 



Acquisition System 

Acquisition Network 

Fig. 1. REAL architecture: deployment overview. 

For RE these access services can be invoked from remote (or 
local) places, through suited communications (LAN, WAN, VPN, 
etc.), protocols, gateways and security systems. 

To face the RE requirements, the approach proposed here is a 
Service Oriented Architecture (SOA), including some main types of 
services for configuration, monitoring or data access, all of them to 
be customized. 

This "Remote Experimentation Architecture for long pulse" 
(REAL) is a set of open JAVA technologies, mainly JINI [1] andJNLP 
(Java Network Launch Protocol) [2a]: 

• JINI provides a services repository where clients may take contact 
with servers through a Lookup Service. It supports a very robust 
communication, scalability, availability, flexibility and easy evo­
lution. 

• JNLP allows remotely running JAVA applications from any net­
work environment. JWS (Java Web Start) [2b] is the reference 
implementation of JNLP specification. Both have big advantages 
like: remote application delivery and automatic SW (Software) 
download as well as control of versions. 

On the other hand, for long pulse is mandatory on-line system 
monitoring, that allows remote clients access to any type of infor­
mation in the moment it is generated. For a correct support of this 
capability, we propose the use of HTTP under MultipartResponse 
configurations (see Section 2.3). 

Fig. 1 shows the typical deployment of REAL technologies in an 
experimental environment of a fusion device. In this schema sev­
eral JINI service providers constitute a network that gives support 
to the access requests coming from JNLP clients in different exper-

Acquisition 
Sensors 

Fig. 2. REAL architecture: software components. 



imentation sites. It also shows the case of some of the JINI services 
that could be implemented in acquisition system hosts. In order to 
provide a complete view, the figure also shows other systems in the 
experimental environment that render several services to the users 
and could interact with the acquisition systems and JINI services. 

2.2. REAL software architecture 

Fig. 2 represents a SW layer schema that shows the inter­
action of REAL architecture technologies, one to each other and 
with the underlying SW technologies. This interaction sets in com­
munication the acquisition systems in a long pulse experimental 
environment with remote experimental applications. 

More in detail, to support this capability, the typical SW config­
uration of REAL includes: 

• Some type of JNLP client application, that takes advantage of the 
on-line access to acquisition systems. 

• Some type of communication (LAN, WAN, VPN, other) supporting 
MultipartResponse HTTP protocol. 

• A Web Application Server that supports: 
• Access control. 
• A JINI client, as the "entry point" to the JINI network. 

• The JINI network, that offers different services over the acquisi­
tion systems, through the JINI Lookup Service (or Service Locator). 
These services could run in one or more machines and have dif­
ferent purposes: 
• Acquisition systems configuration. 
• Acquisition systems monitoring. 
• Experimental data access. 

Likewise, in most advanced experimental environments, these 
JINI services could also be installed in the acquisition system hosts 
[3] 

2.2. Security. Access control 

As mentioned before, a key feature of such RE architectures for 
long pulse, probably the most important, is the ability of enabling 
remote testing under a secure environment. 

REAL architecture proposed here is based on Java 2 platform 
standards. Therefore, it may adopt any security mechanism sup­
ported in the underlying security architecture, in order to support: 

• Authentication: user recognition to access into the environment. 
• Authorization: privileges of using different functionalities. 

For users outside the experimental environment, access to ser­
vices is always done through the Application Server. Therefore, the 
Application Server is responsible for implementing the security and 
access control. Under these context circumstances, our architec­
ture can be adapted to use the specific security infrastructure of 
the organization where it is being implemented. 

This capability makes REAL architecture totally independent 
of the underlying security platform, which could have different 
approaches, e.g.: 

• User/Password 
• Security Smartcards 
• PKI (Public Key Infrastructure) [4]. 

2.3. On-line messaging and remote monitoring. HTTP 
MultipartResponse 

As it has been mentioned, remote monitoring is one of the key 
aspects in REAL architecture. It means that services should be aware 

Polling Technique 

I.WTH.W-g^l 

MultipartResponse Technique 

l.*ffSI"H?B!l 

HTTPMultipartResponse 

HTTPM ulbpah Response' 

HTT PMU itipanR esponse* 

:-!j:.-.-,.-r r-F 

System Stale 

SystemSlate 

Systems tale 

u 

Fig. 3. Polling technique and MultipartResponse technique comparison, 

on-line of all changes in the acquisition system status: 

• Every acquisition system must be able to notify its status at every 
moment. 

• Every monitoring application must be able to display the notified 
changes. 

• All this must be done on-line. 

Our approach is based on the use of the MultipartResponse HTTP 
protocol capacity, which means the ability to send a response split 
in several "pieces". In this way, a continuous client-server connec­
tion can be maintained as long as needed. 

MultipartResponse HTTP improves dramatically the perfor­
mance versus the "Polling technique", that is the most popular 
approach to implement on-line notifications in Web environments. 

As it can be seen in Fig. 3, using a "Polling technique", on-line 
notification of status changes or data responses is being simulated, 
although this should not be considered as really on-line monitor­
ing. In this approach the time delay from change to notification t\ is 
bigger, since it is affected by the polling time cycle, added to the net­
work delay for request and answer. The approach proposed here, 
based in the use of the MultipartResponse HTTP protocol capacity, 
means to send a response split in several "pieces". In this way a con­
tinuous client-server connection is maintained as long as needed 
and the server notifies its changes when they occur. Therefore, the 
time delay from change to notification tj is the minimum, since 
it is not affected by the polling time cycle. Instead of this, it only 
includes the network delay for the answer. 

Obviously the delay time is a variable very dependent on the 
bandwidth of the communication network. Please note that here, 
"remote client" is used in a wide sense, as clients can be placed in 
the same experiment site or in other place, using communications 
through a LAN, WAN, VPN or other suitable. 

3. BeansNet solution 

REAL architecture showed here is totally "open source" and can 
be implemented "totally free" in several ways. Nevertheless a suited 
environment could simplify the work needed to configure a RE 
environment under REAL architecture. 



Editable Logic 
Diagram of 

BeansNet Service 

BeansNet 
Component 

Libraries 

. C T • • - , ^ " W * Technology 

Fig. 4. BeansNet on REAL architecture. 

BeansNetOINDRA is an application development environment 
based on the same SW standards as REAL ones (SOAJINI, JNLP, etc.) 
that strongly eases the deployment and support of services in the 
JINI network of REAL, giving several additional advantages. In short, 
BeansNet is a JAVA application container. Applications running on 
BeansNet are component based, i.e. they comply with Component-
Based Software Engineering (CBSE) paradigm [5].JavaBeans are the 
standard software components for BeansNet. These components 
can be made to interact one to each other in the container, under 
an "ad hoc" configuration that can be specified through a suited 
graphical tool, the BeansNet Assembler (see Section 3.1). 

A set of interacting software components, JavaBeans, com­
pounds a BeansNet Service. BeansNet Services are announced as 
software services, i.e. BeansNet establishes a Service Oriented 
Architecture (SOA). 

Fig. 4 shows how BeansNet is integrated in a Java environ­
ment, supporting the REAL architecture. A BeansNet service is 
composed by an ensemble of Java Beans that interact one to each 
other bringing the advantages of component-based applications 
(e.g. reusability). Otherwise, since they are JINI services, BeansNet 
services also have the advantages of those ones (high scalability, 
robustness, high availability, etc.). For the same reason, the access to 
these services is very easy through a JINI client. Actually, BeansNet 
offers the possibility to implement our own Servlet Proxy as a JINI 
client, which supports the remote access to the properties belong­
ing to the Java Beans that compound a BeansNet service. 

BeansNet Services also may interact to create new loosely 
coupled services to support the requirements of experimental pro­
cesses and users. Actually, BeansNet Assembler is a special kind of 
service with capabilities such as add and remove components in 
other services, or change component properties values. 

There is no need to stop or restart a service after its updation 
or remodeling. This BeansNet feature increases the operative avail­
ability of services and allows on-line modification of services. 

3.1. The BeansNet Assembler 

BeansNet Services are modeled with the BeansNet Assembler 
tool (see Fig. 5), where the components,Java Beans, are represented 
as if they were hardware chipsets, in order to make the work easier 
and intuitive. Chipset pins represent the component properties (e.g. 
a PXI card identification, a channel speed, etc.), whose values can 
be modified by other components that have a connection with it. 
The change of component connections modifies the way a BeansNet 
Service works. An individual component may modify its behavior 
when contains a Customizer, which provides a complete custom 
GUI (Graphical User Interface) for customizing a target Java Bean. 

A BeansNet service may be conceived as a "big chipset". Reg­
istered services may interact in the same way as components 
do, creating new loosely coupled services. Anyway, a standalone 
BeansNet Service should provide fully functionality when it is prop­
erly modeled. 

- _ = J 

L i =J 

BeansNet 
Services 
Manager 

BeansNet Service 
Available 
Properties 

Fig. 5. BeansNet Assembler tool. 

3.2. BeansNet security 

BeansNet contains a set of packages that enables services to 
authenticate and enforce access controls upon users. It implements 
a version of the ACEGI framework [6], a powerful and flexible 
security solution for Java enterprise applications, and supports 
user-based authorization. In this environment, BeansNet integra­
tion with other security frameworks is implemented with a set of 
common interfaces that allows support and interaction with any 
security platform. 

BeansNet security also features the so called "security enabled 
services", which means that those services can be built and edited 
according to security permissions. Finally, BeansNet security con­
figuration used to be stored in an XML file although could also be 
loaded from a database or a LDAP (Lightweight Directory Access 
Protocol) server [7]. 

3.3. BeansNet database interaction 

BeansNet database interaction is done through HIBERNATE [8], 
an open source data persistence solution. Hibernate is an Object 
Relational Mapping (ORM) tool that supports most of the databases 
with JDBC (Java Database Connectivity) drivers [9], providing an 
easy-to-use framework for mapping an object-oriented domain 
model into a traditional relational database. 

4. Implementation of a Remote Experimentation 
environment with BeansNet 

A relevant reference of the use of REAL, implemented under 
BeansNet, is the upgrade of the Remote Experimentation system 
of TJ-II fusion facility, in CIEMAT (Spain). 

4.1. TJ-II data acquisition processes 

TJ-II is a short pulse machine (Cycles: a pulse every lOmin, 
500 ms pulse time). There are two main processes for TJ-II data 
collection during experiments: 

• Experiment Launch Process. TJ-II Central System runs a Server 
Socket process that notifies to every Client Socket connected 
when a new experiment is launched. After a launching event, PXI 
Nodes [10,11] receive the configuration about the way TJ-II data 
must be collected. 



«l_inux R T A I » 

PXI Acquisition Platform 

«lnterface» 
Card Conf Server Socket 

«L inux R T A I » 

PXI Acquisition Platform 

« L a b v i e w » 

« l n t e r f a c e » 
Card Conf Server Socket 

<<Fusion Device>> 

TJ-II 

<<Core Experimental Environment^ 

Central System 

«Hardware Tr igger» 
Start Experiment 

<Central System lnterface> 
Server Socket 

Expert merit Startu p 

«J i n i Node>> 

BeansNet Node 

•Jini App: 
Lookup Service 

«=BeansNet Serv ice^ 
Config Experimental Apps 

c<component>^ 
Socket 

Config PXI-1 

«componen t» 
Config PXI-1 

•^comp orients-
Socket Start 
Experiment 

<<Apache + Tomcat>> 

Web Application Portal 

«component>> 
Config PXI-N 

•=<component» 
Socket 

Config P5<l-N 

«componen t» 
DAO Cards 

Config 

_̂ N 

«Database>> 

SQLServer 

Security 

« T a b l e s » 
Cards 

Configuration 

<-WAR>> 
BeansNet P roxy Seru let 

"Secur i ty Provider*? 
PAP! < -

" J a v a Web Star ts 
PXI Devices Configuration 

« lntranet Node>> 

Desktop Client 

<<BeansNet Assembler» 
Client Application 

Fig. 6. TJ-II RE solution using BeansNet. Deployment diagram (UML notation). 

• Card Configuration Process. An authorized user may gain access 
to the system in order to individually change PXI cards configu­
ration values on a chassis. PXI cards load their last configurations 
provided by users during experiment launch and while running. 

4.2. RE solution deployment using BeansNet 

BeansNet RE solution implemented in TJ-II is a facade reengi-
neering of a well-tested architecture designed byj. Vega et al. When 
it was introduced, the former TJ-II remote participation system 
design was extensively discussed, selecting Web andjava technolo­
gies as the best suited to this type of applications [12-14]. 

The new BeansNet implementation includes (see UML deploy­
ment schema in Fig. 6): 

• JINI Node: it is the core application for TJ-II acquisition services. 
Contains: The JINI Lookup Service, where BeansNet services are 
registered, and the BeansNet service for PXI cards configuration. 

• Apache Tomcat node: the application web portal, accessible both 
for remote and local users. Tomcat server contains two HTTP 
applications, under PAPI security [15]: 
• A Java Swing application for PXI cards customization. Every 

component in a BeansNet Service has a set of properties, Java 
Beans getters and setters, which can be modified during service 
execution. 

• A Java Web application acting as an http proxy for the Swing 
application. 

• Intranet node: the desktop client. Any PC on the intranet can 
run the BeansNet Assembler that allows Intranet users access to 
the repository for services creation or modification (obviously 
this requires security permissions over BeansNet Assembler and 
BeansNet Services). 

Obviously, TJ-II did not take full advantage of the on-line REAL 
capabilities, since it is a short pulse device, but allowed testing most 
of REAL capabilities like: remote access for hardware reconfigura­
tion and collected data processing after pulses, adaptation to the 
security implementation of the environment (here PAPI), etc. 

In the other hand, BeansNet contributed with its features to 
improve the TJ-II RE environment, such as: 

1 Service Oriented Architecture with thin client RE graphical appli­
cations, executed from a Web browser, to access acquisition and 
diagnostics equipment. 

1 Graphical composition of access services. 
1 JINI advantages: scalability, robustness, high availability, flexibil­

ity and easy evolution. 
1 JNLP/JWS advantages as remote application delivery and auto­

matic SW download and control of versions. 

5. Summary 

REAL is a totally open architecture for Remote Experimenta­
tion in long pulse fusion facilities. By itself, REAL offers significant 
advantages that are essential for long pulse fusion experimenta­
tion: 

On-line access to acquisition systems for monitoring, configura­
tion and data use. 
Access authentication and authorization under multiple security 
implementations. 
Local or remote network access: LAN, WAN, VPN, etc. 
Scalability, flexibility, robustness, platform independence, etc. 



REAL can be implemented under BeansNet that is an application 
development environment based on the same SW standards. This 
gives additional advantages, as: 

• Easy implementation. 
• Graphical tool for service composition and configuration. 
• Availability & hot-swap (on-line change) of services. No need to 

stop or restart services after update or remodeling. 
• INDRA support. 

Finally, it is worth to mention that BeansNet is a well-tested 
platform in very diverse data acquisition and control systems such 
as high speed train control system, electricity metering systems or 
defense aircraft automatic maintenance systems [16-18]. 

References 

[1] JINI Network Technology: http://www.jini.org/wiki/Main_Page. 
[2] (a) JNLP: http://java.sun.com/docs/books/tutorial/deployment/deploymentIn 

Depth/jnlp.html.: 
(b)JWS http://today.java.net/pub/a/today/2005/08/ll/webstart.html. 

[3] J. Gonzalez, M. Ruiz, E. Barrera, J.M. Lopez, G. de Areas, J. Vega, Services ori­
ented architecture for adaptive and intelligent data acquisition and processing 
systems in long pulse fusion experiments, in: IAEATM2009 Proceedings, 2009. 

[4] PKI: http://www.sun.com/blueprints/0801/publickey.pdf. 
[5] CBSE: J.Q. Ning, Component-based software engineering (CBSE), in: 

SAST Proceedings, 5th International Symposium on Assessment of Soft­
ware Tools (SAST '97), 1997, p. 0034, http://doi.ieeecomputersociety.org/ 
10.1109/AST.l 997.599909. 

[6] ACEGI: http://www.acegisecurity.org/. 
[7J LDAP: T.A. Howes, M.C. Smith, G.S. Good, Understanding and Deploying LDAP 

Directory Services, 2nd Ed., Addison-Wesley, 2003, ISBN 0-672-32316-8. 
[8] HIBERNATE: Christian Bauer, Gavin King, Java Persistence with Hibernate. 

Second Edition of Hibernate in Action, Manning Publications Co., 2006, ISBN 
1-932394-88-5. 

[9] JDBC: http://java.sun.eom/javase/6/docs/technotes/guides/jdbc/. 
[10] M. Ruiz, S. Lopez, E. Barrera, J. Vega, E. Sanchez, Distributed real time data 

processing architecture for the TJ II data acquisition system, Rev. Sci. Instrum. 
75 (10) (2004) 4261-4264. 

[11] E. Barrera, M. Ruiz, S. Lopez, D. Machon, J. Vega, PXI-based architecture for real 
time data acquisition and distributed dynamic data processing, IEEE TNS 53-3 
(2006) 923-926. 

[12] J. Vega, E. Sanchez, A. Lopez, A. Portas, M. Ochando, A. Mollinedo, et al., 
Design of the TJ II remote participation system, Rev. Sci. Instrum. 74 (3) (2003) 
1773-1777. 

[13] J. Vega, E. Sanchez, A. Portas, M. Ruiz, E. Barrera, S. Lopez, Multi-tier approach 
for data acquisition programming in the TJ-II remote participation system, Rev. 
Sci. Instrum. 75 (10) (2004) 4251-4253. 

114] J. Vega, E. Sanchez, A. Portas, A. Pereira, A. Mollinedo.J.A. Mufioz, et al., Overview 
of the TJ-II remote participation system, Fusion Eng. Des. 81 (2006) 2045-2050. 

[15] R. Castro, D.R. Lopez, J. Vega, An authentication and authorization infrastruc­
ture: the PAPI system, Fusion Eng. Des. 81 (2006) 2057-2061. 

[16] http://www.indra.es/servlet/ContentServer?pagename=IndraES/Proyecto_FA/ 
DetalleProyecto&cid=1118068281697&pid=l 100590229116&Language=en_ 
GB&opc=T5. 

[17] http://www.indra.es/servlet/ContentServer?pagename=IndraES/Proyecto_FA/ 
DetalleProyecto&cid=1084369906432&pid=1083830064918&Language=en_ 
GB&opc=Listado. 

[18] http://acquisition.navy.mil/acquisition_one_source/program_assistance_and_ 
tools/best_practices_and_lessons_learned/applying_acquisition_reform_to_ 
support _equipment_acquisition. 

http://www.jini.org/wiki/Main_Page
http://java.sun.com/docs/books/tutorial/deployment/deploymentIn
http://today.java.net/pub/a/today/2005/08/ll/webstart.html
http://www.sun.com/blueprints/0801/publickey.pdf
http://doi.ieeecomputersociety.org/
http://www.acegisecurity.org/
http://java.sun.eom/javase/6/docs/technotes/guides/jdbc/
http://www.indra.es/servlet/ContentServer?pagename=IndraES/Proyecto_FA/
http://www.indra.es/servlet/ContentServer?pagename=IndraES/Proyecto_FA/
http://acquisition.navy.mil/acquisition_one_source/program_assistance_and_



