1,565 research outputs found
A derivation of Regge trajectories in large-N transverse lattice QCD
Large-N QCD is analysed in light-front coordinates with a transverse lattice
at strong coupling. The general formalism can be looked up on as a d+n
expansion with a stack of d-dimensional hyperplanes uniformly spaced in n
transverse dimensions. It can arise by application of the renormalisation group
transformations only in the transverse directions. At leading order in strong
coupling, the gauge field dynamics reduces to the constraint that only colour
singlet states can jump between the hyperplanes. With d=2, n=2 and large-N, the
leading order strong coupling results are simple renormalisations of those for
the 't Hooft model. The meson spectrum lies on a set of parallel trajectories
labeled by spin. This is the first derivation of the widely anticipated Regge
trajectories in a regulated systematic expansion in QCD.Comment: Lattice 2000 (spectrum), 5 pages, to appear in the proceeding
String Spectrum of 1+1-Dimensional Large N QCD with Adjoint Matter
We propose gauging matrix models of string theory to eliminate unwanted
non-singlet states. To this end we perform a discretised light-cone
quantisation of large N gauge theory in 1+1 dimensions, with scalar or
fermionic matter fields transforming in the adjoint representation of SU(N).
The entire spectrum consists of bosonic and fermionic closed-string
excitations, which are free as N tends to infinity. We analyze the general
features of such bound states as a function of the cut-off and the gauge
coupling, obtaining good convergence for the case of adjoint fermions. We
discuss possible extensions of the model and the search for new non-critical
string theories.Comment: 20 pages (7 figures available from authors as postscipt files),
PUPT-134
Colour-Dielectric Gauge Theory on a Transverse Lattice
We investigate in some detail consequences of the effective colour-dielectric
formulation of lattice gauge theory using the light-cone Hamiltonian formalism
with a transverse lattice. As a quantitative test of this approach, we have
performed extensive analytic and numerical calculations for 2+1-dimensional
pure gauge theory in the large N limit. Because of Eguchi-Kawai reduction, one
effectively studies a 1+1-dimensional gauge theory coupled to matter in the
adjoint representation. We study the structure of coupling constant space for
our effective potential by comparing with the physical results available from
conventional Euclidean lattice Monte Carlo simulations of this system. In
particular, we calculate and measure the scaling behaviour of the entire
low-lying glueball spectrum, glueball wavefunctions, string tension, asymptotic
density of states, and deconfining temperature. We employ a new hybrid
DLCQ/wavefunction basis in our calculations of the light-cone Hamiltonian
matrix elements, along with extrapolation in Tamm-Dancoff truncation,
significantly reducing numerical errors. Finally we discuss, in light of our
results, what further measurements and calculations could be made in order to
systematically remove lattice spacing dependence from our effective potential a
priori.Comment: 48 pages, Latex, uses macro boxedeps.tex, minor errors corrected in
revised versio
Transverse Lattice Approach to Light-Front Hamiltonian QCD
We describe a non-perturbative procedure for solving from first principles
the light-front Hamiltonian problem of SU(N) pure gauge theory in D spacetime
dimensions (D>2), based on enforcing Lorentz covariance of observables. A
transverse lattice regulator and colour-dielectric link fields are employed,
together with an associated effective potential. We argue that the light-front
vacuum is necessarily trivial for large enough lattice spacing, and clarify why
this leads to an Eguchi-Kawai dimensional reduction of observables to
1+1-dimensions in the infinite N limit. The procedure is then tested by
explicit calculations for 2+1-dimensional SU(infinity) gauge theory, within a
first approximation to the lattice effective potential. We identify a scaling
trajectory which produces Lorentz covariant behaviour for the lightest
glueballs. The predicted masses, in units of the measured string tension, are
in agreement with recent results from conventional Euclidean lattice
simulations. In addition, we obtain the potential between heavy sources and the
structure of the glueballs from their light-front wavefunctions. Finally, we
briefly discuss the extension of these calculations to 3+1-dimensions.Comment: 55 pages, uses macro boxedeps.tex, minor corrections in revised
versio
QCD strings and the thermodynamics of the metastable phase of QCD at large
The thermodyanmics of a metastable hadronic phase of QCD at large are
related to properties of an effective QCD string. In particular, it is shown
that in the large limit and near the maximum hadronic temperature, ,
the energy density and pressure of the metastable phase scale as (for ) and (for ) where is the effective
number of transverse dimensions of the string theory. It is shown, however,
that for the thermodynamic quantities of interest the limits and
do not commute. The prospect of extracting via
lattice simulations of the metastable hadronic phase at moderately large
is discussed.Comment: After this paper was published, the author became aware of an
important early paper by Charles Thorn on the subject of the QCD phase
transition at large N_c and its relation to the Hagedorn spectrum. Given the
pioneering nature of Thorn's paper, and the fact that it is not as widely
known as it should be, it is important to cite it in the present work. This
updated version cites Thorn's wor
Recommended from our members
In search of predictive endophenotypes in addiction: insights from preclinical research.
Drug addiction is widely recognized to afflict some but not all individuals by virtue of underlying risk markers and traits involving multifaceted interactions between polygenic and external factors. Remarkably, only a small proportion of individuals exposed to licit and illicit drugs develop compulsive drug-seeking behavior, maintained in the face of adverse consequences and associated detrimental patterns of drug intake involving extended and repeated bouts of binge intoxication, withdrawal and relapse. As a consequence, research has increasingly endeavored to identify distinctive neurobehavioral mechanisms and endophenotypes that predispose individuals to compulsive drug use. However, research in active drug users is hampered by the difficulty in categorizing putatively causal behavioral traits prior to the initiation of drug use. By contrast, research in experimental animals is often hindered by the validity of approaches used to investigate the neural and psychological mechanisms of compulsive drug-seeking habits in humans. Herein, we survey and discuss the principal findings emanating from preclinical animal research on addiction and highlight how specific behavioral endophenotypes of presumed genetic origin (e.g. trait anxiety, novelty preference and impulsivity) differentially contribute to compulsive forms of drug seeking and taking and, in particular, how these differentiate between different classes of stimulant and non-stimulant drugs of abuse.The authors acknowledge funding support from the UK Medical Research Council (grants G9536855; G0701500; G0802729), the Newton-Cambridge Trust and the Wellcome Trust (grant WT109738MA). The Behavioural and Clinical Neuroscience Institute at Cambridge University is supported by a core award from the Medical Research Council (G1000183) and Wellcome Trust (093875/Z/10/Z).This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1111/gbb.1226
On the Spectrum of QCD(1+1) with SU(N_c) Currents
Extending previous work, we calculate in this note the fermionic spectrum of
two-dimensional QCD (QCD_2) in the formulation with SU(N_c) currents. Together
with the results in the bosonic sector this allows to address the as yet
unresolved task of finding the single-particle states of this theory as a
function of the ratio of the numbers of flavors and colors, \lambda=N_f/N_c,
anew. We construct the Hamiltonian matrix in DLCQ formulation as an algebraic
function of the harmonic resolution K and the continuous parameter \lambda.
Amongst the more surprising findings in the fermionic sector chiefly considered
here is that the fermion momentum is a function of \lambda. This dependence is
necessary in order to reproduce the well-known 't Hooft and large N_f spectra.
Remarkably, those spectra have the same single-particle content as the ones in
the bosonic sectors. The twist here is the dramatically different sizes of the
Fock bases in the two sectors, which makes it possible to interpret in
principle all states of the discrete approach. The hope is that some of this
insight carries over into the continuum. We also present some new findings
concerning the single-particle spectrum of the adjoint theory.Comment: 21 pp., 13 figures, version published in PR
Universality in Two Dimensional Gauge Theory.
We discuss two dimensional Yang -- Mills theories with massless fermions in
arbitrary representations of a gauge group . It is shown that the physics
(spectrum and interactions) of the massive states in such models is independent
of the detailed structure of the model, and only depends on the gauge group
and an integer measuring the total anomaly. The massless physics, which
does depend on the details of the model, decouples (almost) completely from
that of the massive one. As an example, we discuss the equivalence of QCD
coupled to fermions in the adjoint, and fundamental representations.Comment: 16 pages, harvma
Exact Solution of the One-Dimensional Non-Abelian Coulomb Gas at Large N
The problem of computing the thermodynamic properties of a one-dimensional
gas of particles which transform in the adjoint representation of the gauge
group and interact through non-Abelian electric fields is formulated and solved
in the large limit. The explicit solution exhibits a first order
confinement-deconfinement phase transition with computable properties and
describes two dimensional adjoint QCD in the limit where matter field masses
are large.Comment: 8 pages, late
- …