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Abstract 

Drug addiction is widely recognised to afflict some but not all individuals by virtue of 

underlying risk markers and traits involving multifaceted interactions between polygenic and 

external factors. Remarkably, only a small proportion of individuals exposed to licit and 

illicit drugs develop compulsive drug seeking behavior, maintained in the face of adverse 

consequences, and associated detrimental patterns of drug intake involving extended and 

repeated bouts of binge intoxication, withdrawal, and relapse. As a consequence research has 

increasingly endeavoured to identify distinctive neurobehavioral mechanisms and 

endophenotypes that predispose individuals to compulsive drug use. However, research in 

active drug users is hampered by the difficulty in categorising putatively causal behavioral 

traits prior to the initiation of drug use. By contrast, research in experimental animals is often 

hindered by the validity of approaches used to investigate the neural and psychological 

mechanisms of compulsive drug-seeking habits in humans. Herein, we survey and discuss the 

principal findings emanating from preclinical animal research on addiction and highlight how 

specific behavioral endophenotypes of presumed genetic origin (e.g. trait anxiety, novelty 

preference and impulsivity) differentially contribute to compulsive forms of drug seeking 

and taking and, in particular, how these differentiate between different classes of stimulant 

and non-stimulant drugs of abuse.  

Key words: substance use disorder; anxiety; impulsivity; sensation-seeking; novelty 

preference; psychostimulants; opiates; alcohol 
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Introduction 

Drug addiction is a complex neuropsychiatric disorder that manifests in a comparatively 

small subset of people exposed repeatedly to drugs (Anthony et al., 1989, Anthony et al., 

1994, Degenhardt et al., 2008). Addicted individuals place a substantial economic and 

social burden, estimated to cost the UK more than 40 billion pounds each year (Justice, 

2013). However, despite decades of animal and clinical research the etiological mechanisms 

and pathophysiology of this progressive and debilitating disorder remain surprisingly poorly 

understood. Nevertheless, the shift from recreational to compulsive drug seeking, a hallmark 

of addiction or substance use disorder (American Psychiatric Association, 2013), is widely 

regarded to depend on several interacting variables encompassing specific behavioral traits, 

environmental triggers (e.g. stress) and unremitting drug use (Kreek et al., 2012, Uhl, 2004, 

Uhl & Grow, 2004, Wong & Schumann, 2008). Determining the intricate interplay between 

these variables presents a formidable barrier to understanding the origin of addiction in 

afflicted individuals (Meyer-Lindenberg & Weinberger, 2006).  

 Addiction is commonly allied with distinct behavioral traits, co-morbid psychiatric 

disorders and cognitive impairment (Rogers & Robbins, 2001). In particular, the traits of 

anxiety, sensation-seeking and impulsivity are strongly linked with drug abuse (Franques et 

al., 2000, Sher et al., 2000, Terracciano et al., 2008, Zuckerman, 1986) and often 

preferentially to specific classes of abused drug (Ball et al., 1998, Clapper et al., 1994, 

Conway et al., 2002, Franques et al., 2000, Gossop, 1978, Greene et al., 1993, Labouvie & 

Mcgee, 1986, Schinka et al., 1994, Terracciano et al., 2008, Zuckerman, 1986). However, in 

individuals addicted to drugs, where more than one drug is frequently abused, it is almost 

impossible to disambiguate the causal trajectory of premorbid, drug-naïve, traits from the 

effects of on-going drug use itself (Rogers & Robbins, 2001). As a result animal 

experimental approaches to addiction have increasingly become more sophisticated in recent 

years to more accurately reflect ‘real world’ compulsive drug use beyond simple 

reinforcement mechanisms (Belin et al., 2009a, Belin et al., 2011a, Belin & Everitt, 2008, 
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Belin et al., 2008, Belin-Rauscent et al., 2015, Deroche-Gamonet et al., 2004, Kasanetz et 

al., 2010, Kasanetz et al., 2013, Pelloux et al., 2007, Vanderschuren & Everitt, 2004). These 

approaches enable well-controlled, within-subject, longitudinal studies to be carried out with 

high construct and predictive validity (Belin-Rauscent & Belin, 2012, Geyer et al., 1995) 

ultimately to investigate biological and genetic mechanisms underlying drug-prone 

behavioral traits and constructs. Here, we survey the discoveries made using these clinically-

informed approaches, future research directions, and the translational relevance of this work 

for human addiction.  

Measuring drug taking and drug relapse in experimental animals 

Whilst animal models can never replicate entirely the complex social and often personal 

reasons why people start using and eventually abusing drugs (Comeau et al., 2001, 

Khantzian, 1997), they nevertheless provide a rigorous means to precisely control 

environmental context, drug exposure, and behavioral and cognitive processes prior to drug 

exposure. They also allow detailed neural interventions to be carried out to establish the 

causal influences of putative neural loci and, in turn, the cellular and molecular substrates of 

addiction. Experimental approaches in animals thus provide a valuable means to investigate 

the different stages of addiction (Belin-Rauscent et al., 2015, Everitt, 2014) including the 

initiation and maintenance of drug taking, accompanying bouts of drug bingeing and 

escalation, and later the ‘switch’ to compulsive drug use defined operationally by the 

persistence of drug-seeking despite punishment (Belin-Rauscent et al., 2015). 

 Over the last decade pre-clinical research has strived to better integrate one or more 

defining dimensions of addiction according to the Diagnostic and Statistical Manual 

(American Psychiatric Association, 2013). This research has paved the way to identify 

specific phenotypes and markers underlying reinstatement of extinguished instrumental 

seeking responding (Bossert et al., 2005, Shaham & Miczek, 2003), relapse to drug-seeking 

(Tran-Nguyen et al., 1998), loss-of-control over drug intake (Ahmed & Koob, 1998, Ahmed 
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& Koob, 2005), habitual and compulsive cocaine seeking (Belin & Everitt, 2008, 

Economidou et al., 2009, Everitt & Robbins, 2000, Giuliano et al., 2015, Murray et al., 2014, 

Pelloux et al., 2007, Vanderschuren & Everitt, 2005), and individual variability in addiction-

like behavior (Belin et al., 2009a, Belin et al., 2011a, Belin & Deroche-Gamonet, 2012, 

Deroche-Gamonet et al., 2004).  

 

Drug self-administration 

Drugs abused by humans have powerful reinforcing effects (Belin et al., 2009b, O'brien et 

al., 1992a, Robbins & Everitt, 2002, White, 1996). This fundamental capacity of addictive 

substances is widely and routinely investigated using the drug self-administration paradigm 

where rats, monkeys and other animals learn to respond contingently (e.g. on a lever) to 

obtain a drug delivered intravenously, orally or even directly into the brain (e.g.David et al., 

2006, Goldberg et al., 1969, Miles et al., 2003, Parada et al., 1994, Spealman & Goldberg, 

1978, Weeks, 1962). In many drug self-administration paradigms drug delivery is predicted 

by the contingent presentation of a stimulus that becomes, through Pavlovian conditioning, a 

conditioned stimulus (CS). Assessing the acquisition of drug self-administration has provided 

valuable insights into the neural substrates that support and regulate volitional drug-taking 

behavior (Chao & Nestler, 2004). By increasing the response demand for each drug 

infusion, effected using a progressive-ratio (PR) schedule, the motivation for drugs can 

also be evaluated (Belin & Deroche-Gamonet, 2012, Richardson & Roberts, 1996). 

However, such reinforcement schedules alone, where animals receive drug after every 

response, or after every ratio of responses, fail to capture the propensity of addicted 

individuals to relapse and persistently seek drugs.  

 

 

Reinstatement 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
 

 
Drug addicted individuals show a high propensity to relapse, even after protracted abstinence 

(American Psychiatric Association, 2013). This defining aspect of addiction is commonly 

modelled in animals using two main empirical approaches: (i) extinction-reinstatement, 

developed initially by Jane Stewart and colleagues (De Wit & Stewart, 1981, De Wit & 

Stewart, 1983); and (ii) procedures based on abstinence-relapse (See et al., 2007).  

 Reinstatement of responding for drug can be elicited by stress, low priming doses of 

drug, and by the presentation of drug-associated cues (Bossert et al., 2005, Capriles et al., 

2003, De Wit & Stewart, 1981, De Wit & Stewart, 1983, Fuchs et al., 2004, Fuchs et al., 

2008, Fuchs et al., 1998, Knackstedt & Kalivas, 2009, Marchant et al., 2013b, Shalev et al., 

2002, Torregrossa & Kalivas, 2008, Zhou & Kalivas, 2008). In the extinction-reinstatement 

paradigm (Rocha & Kalivas, 2010), animals experience a series of extinction sessions 

following a short period of drug self-administration; this results in a progressive decline in 

responding. Following extinction, responding for drug is reinstated by either a stressful 

stimulus, a priming injection of drug, a drug-paired CS or by placing the animal in a drug-

conditioned environment. The neural circuits of reinstatement have been extensively mapped 

and include structures within the extended amygdala, prefrontal cortex and mesolimbic 

dopamine (DA) system (De Wit & Stewart, 1981, De Wit & Stewart, 1983, Kalivas & 

Mcfarland, 2003, Shalev et al., 2002).  

 

Forced abstinence-induced relapse 

In abstinence-relapse procedures (See et al., 2007), animals undergo a forced period of 

abstinence following a brief period of drug self-administration. Thereafter they are 

maintained in their home cage until being exposed again to the self-administration chamber 

where they are tested under extinction. Whereas reinstatement procedures involve the nucleus 

accumbens (NAcb) and dopaminergic and glutamatergic inputs to this region, abstinence-

induced relapse to drug-seeking depends instead on the dorsolateral striatum (Fuchs et al., 

2006, See et al., 2007). 
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 Preclinical models of relapse have also been developed that provide a closer 

correspondence to voluntary abstinence and the compulsive forms of relapse typical of 

human addicted to drugs (Ducret et al., 2015, Economidou et al., 2009, Marchant et al., 

2014, Marchant et al., 2013a). In such procedures rats are trained to self-administer the 

drug with an aversive stimulus (e.g. foot-shock) presented in the same or different 

context such that rats abstain from responding. In such settings, considerable variability 

exists in the rate of decrease in instrumental responding among different rats (Economidou et 

al., 2009, Marchant et al., 2014) and this can be exploited to investigate neurobiological 

mechanisms of both self-imposed abstinence and the resumption of instrumental responding 

(relapse) when the aversive stimulus is removed.   

 

Measuring drug addiction-like behavior in experimental animals  

There has been considerable progress made in recent years in developing novel 

experimental approaches to the study of ‘addiction’. In a general sense such approaches 

attempt to capture not only the persistence of drug seeking and drug taking under 

punishment but also the evident vulnerability of sub-populations of individuals to 

switch from controlled to compulsive drug use (Belin-Rauscent et al., 2015).  

 

Drug-seeking 

Drug addicts increasingly develop a preoccupation with drug use and spend considerable 

periods of time foraging to gain access to drugs. This aspect of drug seeking can be captured 

in animals by implementing schedules of reinforcement that separate drug seeking from drug 

taking responses and by the conditioned place preference (CPP) assay. CPP is widely 

used to elucidate the mechanisms supporting appetitive associative properties of 

addictive drugs (Blander et al., 1984, Stewart & Grupp, 1981, Stolerman, 1985, White & 

Carr, 1985) but has limited utility in probing compulsive drug seeking and therefore is 

not considered further in this article. Other approaches include two-link heterogeneous 
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chained schedules of reinforcement and second order schedules of reinforcement. The two-

link heterogeneous chained schedule involves responding on (e.g.) one lever, designated the 

seeking link, to gain access to a drug taking lever (the second link). This procedure has the 

distinct advantage of clearly separating two instrumental components of drug seeking and 

taking, which involve dissociable neural and psychological processes (Belin et al., 2009b, 

Everitt & Robbins, 2005). In second-order schedules of reinforcement (Goldberg, 1973) a CS 

is presented response-contingently, usually under a fixed-ratio schedule, during an overall 

fixed interval or fixed ratio schedule for the primary reinforcer; this has the dramatic effect of 

enhancing and maintaining drug seeking responses during the inter-reinforcement interval 

(Arroyo et al., 1998, Belin et al., 2011b, Belin & Everitt, 2008). Thus, under a second-order 

schedule of reinforcement, a strong contingency exists between the instrumental response and 

the presentation of the CS occasioned by the relatively weaker contingency between 

instrumental behaviour and delivery of drug. Such schedules facilitate the development of 

habitual stimulus-response (S-R) control over instrumental responding (Adams & Dickinson, 

1981).  

 

Compulsive drug seeking and taking 

Compulsive disorders such as addiction involve the uncontrollable and irresistible urge to 

perform a behavior, often to relieve anxiety or stress, irrespective of whether the behavior is 

rationale or not and results in adverse outcomes (Everitt & Robbins, 2015, Koob et al., 

1998). In particular, virtually all abused drugs are neurotoxic and produce with protracted use 

severe neurological complications. Such effects would normally be expected progressively to 

devalue a drug reinforcer and facilitate abstinence. Critically, however, despite often 

acknowledging the deleterious impact of chronic drug abuse, addicts rarely achieve 

spontaneous and enduring voluntary abstinence. Remarkably, this emergent tendency to 

discount drug-associated adversity also extends to rodents. Thus, although responding for 
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food is markedly affected by pairing its ingestion with illness caused by the systemic 

injection of lithium chloride, similar devaluation of orally-administered alcohol and cocaine 

does not demonstrably decrease drug-seeking behavior (Corbit et al., 2012, Cunningham et 

al., 2000, Dickinson et al., 2002). Moreover, Vanderschuren and Everitt (2004) established 

that the presentation of a Pavlovian conditioned fear stimulus after an extended self-

administration training history failed to suppress cocaine self–administration, whereas after a 

brief cocaine-taking history, it did. Thus, while instrumental behaviour directed at obtaining 

drugs may be initially a flexible, goal-directed pursuit, following prolonged drug exposure, 

drug-seeking becomes increasingly insensitive to signals of punishment, thereby revealing its 

compulsive character. However, even after moderate drug exposure, a sub-group of rats 

(~20%) noticeably show enhanced resistance to punishment with minimal or no suppression 

of drug-seeking under punishment (Pelloux et al., 2007). Thus, compulsive drug-seeking in 

rats appears to depend, as in humans, on the duration and quantity of drug use together with 

interacting individual vulnerability mechanisms.  

 

Loss-of-control over drug taking 

A major defining feature of addiction is escalated drug use that develops with protracted drug 

use. This phenomenon can be modelled in rats given either short access (“ShA”) or long 

access (“LgA”) to intravenous cocaine (Ahmed & Koob, 1998) or heroin (Ahmed & Koob, 

2005) self-administration. ShA to addictive drugs generally results in stable levels of self-

administration such that plasma drug levels are regulated within an optimal level of 

reinforcement (Zernig et al., 2007). By contrast, LgA drug exposure results in a steady 

escalation in drug self-administration and higher rates of responding for drug during the first 

hour of each session (Ahmed & Koob, 1998). Notably, escalated drug intake is associated 

with higher resistance to both shock-induced and conditioned suppression of drug self-

administration (Ahmed et al., 2000, Pelloux et al., 2007) suggesting that drug-induced neural 

plasticity mechanisms may contribute to some aspects of compulsive drug taking. Moreover, 
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after extended access to cocaine, only a subgroup of animals (~24%) showed minimal or 

no shock-induced suppression of drug taking (Pelloux et al., 2007).  

 However, the LgA model does assume that all subjects exposed to cocaine and other 

drugs develop compulsive drug intake, a prediction at odds with the notion of individual 

vulnerability affecting far fewer individuals than those exposed initially to drugs (Anthony et 

al., 1994). Moreover, only roughly 40% of rats subjected to LgA heroin robustly show 

escalated self-administration (Mcnamara et al., 2010) and rats still prefer saccharine over 

cocaine despite showing greatly elevated cocaine self-administration with extended access 

(Lenoir et al., 2007). These findings suggest that schedule-induced escalation of drug intake 

captures one aspect of addiction, namely the use of drug in larger amounts, but in isolation 

this phenomenon is not sufficient to explain the development of compulsive drug taking in 

subsets of vulnerable individuals.  

 The concept of inter-individual vulnerability to addiction has been substantiated by 

operationalising three diagnostic criteria of DSM-IV (American Psychiatric Association, 

2000) in rats. These include: (i) an inability to refrain from drug seeking; (ii) increased 

motivation for the drug; (iii) maintained drug use despite negative consequences, and 

assessed, respectively, by drug-seeking during periods when the drug is not available and 

signalled as so; increased break points under a progressive-ratio schedule of reinforcement; 

persistent drug taking despite punishment by contingent foot-shocks (Belin et al., 2008, 

Deroche-Gamonet et al., 2004). By assigning a score to each criteria an ‘addicted’ profile can 

be defined by the 3 criteria rat (3crit) that show high scores for each of the three addiction-

like criteria; these represent approximately 20% of all animals tested (Belin et al., 2011a). By 

contrast, animals showing low scores (i.e. 0 criteria or ‘0crit’ subjects) are classified as 

resilient to addiction (Belin & Dalley, 2010, Belin & Deroche-Gamonet, 2012, Deroche-

Gamonet et al., 2004).  

 Although 3crit rats do not differ significantly from 0crit rats in terms of acquiring 

cocaine self-administration (Belin et al., 2009a, Belin et al., 2011a, Belin et al., 2008, 
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Deroche-Gamonet et al., 2004), 3crit rats eventually develop higher motivation for the drug, 

an inability to refrain from drug-seeking, and resistance to punishment (Belin et al., 2009a, 

Belin et al., 2011a, Belin et al., 2008, Deroche-Gamonet et al., 2004). More importantly, 

although selected on three addiction-like behaviours, 3crit rats also show enhanced escalation 

of cocaine self-administration and an increased for relapse compared with 0crit rats (Belin et 

al., 2009a, Deroche-Gamonet et al., 2004). This subset of animals thus shows additional 

hallmarks of vulnerability to addiction that depend on chronic drug experience.   

 

Vulnerability traits 

Epidemiological research has unequivocally demonstrated a relationship between drug use in 

humans and the traits of anxiety (Conway et al., 2002, Forsyth et al., 2003, O'leary et al., 

2000, Skinstad & Swain, 2001), impulsivity (Roberts, 2000, Zilberman et al., 2007) and 

sensation-seeking (Arnett, 1994, Franques et al., 2000, Hanson et al., 2008, Moeller et al., 

2002, Petry et al., 2002, Zuckerman, 1986). Such traits are associated with addiction to 

psychostimulants (Moeller et al., 2002, Semple et al., 2005), opiates (Madden et al., 1997, 

Maremmani et al., 2009), alcohol (Zuckerman, 1990) and tobacco (Petry, 2001). 

Significantly, however, the expression of these traits varies throughout the lifespan (Bickel et 

al., 1999) and during different stages of the addiction cycle (Kreek et al., 2005). Thus it is 

exceedingly difficult to determine how dynamically-expressed traits such as these promote 

and interact with repeated drug use to accelerate drug addiction in humans. Furthermore, 

recent evidence indicates that some traits may have very specific effects on drug taking 

activities. Thus, although the traits of sensation-seeking and impulsivity are present in drug 

dependent individuals, sensation-seekers still maintain some control over their drug intake, 

unlike impulsive people (Ersche et al., 2013). Furthermore trait-like impulsivity in rats 

predicts behavioral features of addiction-like behavior to cocaine but not heroin (Belin et al., 

2008, Dalley et al., 2007, Mcnamara et al., 2010). In the remaining sections we review the 

key findings originating from research in animals that demonstrate the critical dependence of 
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specific addiction-like behaviors on various precursor ‘traits’.  

 

Anxiety 

Highly-anxious individuals may use drugs as part of a coping strategy to gain relief by self-

regulating affective distress states (Khantzian, 1985, Khantzian, 2013, Lejuez et al., 2008). 

Indeed alcohol use disorders and anxiety are highly comorbid in humans (Ipser et al., 2015). 

This form of emotional self-medication may underlie the initiation of drug use, subjective 

states underlying craving (Lejuez et al., 2008, Sherman et al., 1989, Sinha, 2001) and the 

continuation of drug use as a way to mitigate withdrawal symptoms (Khantzian, 1985, 

Khantzian, 2013, Spear, 2000).  

 Pre-clinically, anxiety is typically assessed using procedures that exploit the natural 

fear of animals to open and brightly lit spaces. The elevated plus maze (EPM) (Pellow et al., 

1985, Pellow & File, 1986) is commonly used for this purpose with anxiety measured as the 

preference of animals for closed (protected) versus open arms and increased self-grooming 

behavior (Fig.1). High anxiety on this task predicts the more rapid emergence of a 

conditioned place preference for cocaine (Pelloux et al., 2009), higher break points to self-

administer this stimulant (Homberg et al., 2002), but see (Bush & Vaccarino, 2007), and 

increased preference for alcohol (Henniger et al., 2002, Spanagel et al., 1995). Additionally, 

anxious rats on the EPM more readily escalate cocaine but not heroin self-administration 

compared with low-anxious rats (Dilleen et al., 2012). This apparent but surprising 

relationship between anxiety and subsequent vulnerability to escalate cocaine intake may 

result from an increased tolerance to the anxiogenic effects of high-dose cocaine (Paine et al., 

2002) and/or an enhanced anxiolytic effect of low doses of cocaine (Muller et al., 2008). 

 Withdrawal severity may also play a role in the development of alcoholism and drug 

abuse specifically by encouraging further drug use to relieve anxiety (Holter et al., 1998). 

Work in mice selectively bred for high and low handling-induced convulsions after chronic 

ethanol treatment appears to support this idea (Atkins et al., 2000). Thus, convulsion-prone 
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mice showed higher levels of baseline anxiety and were more sensitive to the anxiolytic 

effects of alcohol than convulsion-resistant mice, suggesting that convulsion-prone animals 

may be genetically predisposed to severe alcohol withdrawal symptoms. However, although 

mice selectively bred for high drinking in the dark (the HDID line) also showed reduced 

anxiety after drinking, no genetic relationship was found between alcohol drinking and 

anxiety (Barkley-Levenson & Crabbe, 2015). Thus, anxiety state and alcohol-induced 

anxiolysis does not explain why HDID mice maintain higher rates of drinking. However, 

though beyond the scope of this article, substantial findings in knockout and transgenic mice 

implicate a major role of the stress hormone corticotropin-releasing factor in determining 

high rates of alcohol consumption and alcohol-seeking during abstinence (for a recent review 

see Phillips et al., 2015).      

 

Novelty-seeking 

Novelty/sensation-seeking is a multifaceted behavioral construct (Arnett, 1994) defined as 

the tendency to pursue intense emotional experiences (Zuckerman, 1974) and conceptualized 

as a heritable tendency towards exploration and excitement in response to novelty (Cloninger 

et al., 1993). Studies in humans have yielded unequivocal evidence that novelty/sensation-

seeking co-exists in individuals with substance use disorder (Gerra et al., 2004, Hittner & 

Swickert, 2006, Noel et al., 2011) and predicts risk for the initiation of drug use (Nees et al., 

2012, Sargent et al., 2010, Spillane et al., 2012, Stephenson & Helme, 2006). However, 

although sensation-seeking is not present in non-affected siblings of drug-addicts, and 

unlikely therefore to be a candidate endophenotype in addiction (Ersche et al., 2010) it is 

present in regular drug users apparently able to maintain controlled drug use (Ersche et al., 

2013). 

 Several procedures have been implemented to assess novelty-seeking behavior in 

animals. These generally involve assessing the preference of rats for novel versus familiar 

environments using activity chambers that differ in light intensity, openness, colour and 
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texture (Fig.1). Notably, using a variant of this procedure, the high novelty preference (HNP) 

‘trait’ in rats was found to strongly associate with individual vulnerability to develop 

compulsive cocaine self-administration (Belin et al., 2011a). Interestingly, however, novelty 

reactivity in non-human primates, as assessed by latencies to touch a novel object, has been 

linked with social dominance, a trait generally associated with a low vulnerability for cocaine 

abuse (Czoty et al., 2010). Indeed this form of novelty-seeking may be analogous to the high-

responder (HR) rat, discussed below.     

 Piazza et al. (1989) were among the first to consider inter-individual differences in the 

way in which animals respond to drugs and thus the concept of “addiction vulnerability” in 

preclinical models. In this procedure, the sensation-seeking trait is assumed by the locomotor 

reactivity of drug-naïve animals in a novel, inescapable environment (Dellu et al., 1996) 

(Fig.1). Based on inter-individual differences in locomotor response over 2 hours animals are 

classified as either HRs or low responders (LRs) based on a median division (Piazza et al., 

1989). HR rats show a greater propensity to acquire psychostimulant self-administration 

(Piazza et al., 1989), more readily self-administer low doses of psychostimulants than LR rats 

(Belin et al., 2008, Piazza et al., 1989) and self-administer more cocaine per unit infusion 

dose than LR rats (Piazza et al., 2000). Importantly, the dimension of novelty/sensation-

seeking is heritable in outbred rats and is associated with reduced anxiety compared with LR 

rats (Stead et al., 2006). 

 

Impulsivity 

Impulsivity has emerged as a key dimensional construct in psychiatry, defined by the 

tendency for premature, poorly planned, and unduly risky actions (De Wit, 2009, Evenden, 

1999, Lejuez et al., 2010, Potenza & De Wit, 2010). Since impulsivity is a heritable, disease-

associated trait present in a number of clinical disorders of impulse control it has been 

championed as an endophenotype for gene discovery (Bevilacqua & Goldman, 2013). 
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Several taxonomies have been proposed to capture the evident multi-faceted nature of 

impulsivity from choice and motor/action impulsivity (Pattij & Vanderschuren, 2008, 

Uslaner & Robinson, 2006, Winstanley et al., 2006), waiting and stopping impulsivity 

(Dalley et al., 2011, Robinson et al., 2009) to the triad of waiting, stopping and risk-based 

impulsivity (Robbins and Dalley, 2015). Understanding the neural and psychological 

heterogeneity of different impulsivity constructs is important not only in the context of 

psychiatric symptoms expressed in attention deficit/hyperactivity disorder (ADHD), 

schizophrenia, and depression but also in the self-regulation of reward-related behavior of 

relevance to drug addiction (De Wit, 2009, Jentsch & Taylor, 1999, Jupp & Dalley, 2014, 

Moeller et al., 2001, Perry & Carroll, 2008). Indeed impulsive behavior is a common co-

morbid indication in addiction (Kreek et al., 2005, Ohlmeier et al., 2008, Swann et al., 2002, 

Verdejo-Garcia et al., 2008, Wills et al., 1994, Wills et al., 1998).  

 Impulsivity is often measured in humans using self-report scales (e.g. the Barrett 

Impulsiveness Scale or BIS) (e.g. Broos et al., 2012). Such scales are convenient and 

standardised but are subjective and critically do not always reflect what is measured more 

objectively by translational methods used to dissociate and investigate different stages of 

impulse control, namely anticipatory behavior, reward discounting (temporal and 

probabilistic) and the cancellation of ongoing behavior (Ainslie, 1975, Dalley & Roiser, 

2012, Swann et al., 2002, Zuckerman & Neeb, 1979). Such methodologies, which include 

delayed gratification procedures (Hamilton et al., 2015a, Hamilton et al., 2015b), Go/No-Go 

performance, stop-signal reaction time (SSRT), differential reinforcement of low rates of 

responding (‘DRL’ schedules), and premature responding on analogues of the human 

continuous performance test have been used widely to investigate specific impulsivity 

constructs (Eagle et al., 2008, Evenden, 1999, Voon et al., 2014, Winstanley et al., 2010) and 

predictive relations with drug reinforcement and addiction (Belin et al., 2008, Carroll et al., 

2009, Dalley et al., 2007, Diergaarde et al., 2008). In addition, risk-taking impulsivity 

associated with behavioral addictions such as pathological gambling (Robbins & Clark, 
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2015) has been experimentally investigated using a rodent analogue of the Iowa 

Gambling Task (Zeeb et al., 2009).      

 Jentsch and Taylor (1999) proposed that compulsive drug-seeking and drug-taking 

behavior resulted from chronic drug consumption that was suggested to diminish the capacity 

of the frontal cortex to suppress inappropriate (impulsive) conditioned and unconditioned 

responses elicited by drugs of abuse (Jentsch & Taylor, 1999). Many of the founding 

arguments of this theory continue to be supported by empirical research today but with the 

added elaboration of ‘trait-like’ variation in impulse control that precedes and causally 

influences the emergence of compulsive drug-seeking and taking (Belin et al., 2008). 

Moreover, extending earlier findings that opiate and cocaine addicts discount future monetary 

rewards more so than non-users (e.g. Kirby & Petry, 2004, Madden et al., 1997), Carroll and 

colleagues demonstrated in rats that impulsive choice on a delay-discounting task predicts the 

more rapid acquisition and escalation of cocaine self-administration (Anker et al., 2009, 

Perry et al., 2005, Perry et al., 2008). 

 Our own research centres on a specific form of impulsive responding on the 5-choice 

serial reaction time task (5-CSRTT), akin to waiting impulsivity (Dalley et al., 2011), and 

analogous to the human continuous performance test of sustained attention (Rosvold & 

Delgado, 1956, Wilkinson, 1963). In this task rats are required to monitor a horizontal array 

of apertures in order to detect a brief light stimulus and to refrain from responding before the 

onset of the stimulus (Robbins, 2002) (Fig.1). The accuracy of stimulus discrimination 

provides an index of attentional capacity, while premature responses - made before the 

presentation of the stimulus - are regarded as a form of impulsive behavior and hence a 

failure in impulse control (Mar & Robbins, 2007). Excessive and persistent failures to inhibit 

anticipatory responding on this task predicts the subsequent escalation of cocaine and 

nicotine self-administration (Dalley et al., 2007, Diergaarde et al., 2008), increased intake 

and sensitivity to sucrose (Diergaarde et al., 2009), increased propensity for relapse following 

voluntary abstinence (Economidou et al., 2009), and elevated cocaine self-administration 
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impulsivity ‘trait’ predicts several hallmarks of addiction as distinct from recreational drug 

use.  

 Of particular significance was our observation that D2/3 receptor availability was reduced in 

the ventral (i.e. NAcb) but not dorsal striatum of high-impulsive rats prior to animals being exposed 

to cocaine (Dalley et al., 2007). Since PET studies in both human stimulant users (Lee et al., 

2009, Volkow et al., 2001) and monkeys trained to self-administer cocaine (Nader et al., 2006) 

report reduced D2/3 receptor availability in the caudate putamen (dorsal striatum), low D2/3 

receptor availability in the ventral striatum may be a heritable, intermediate phenotype (i.e. 

endophenotype) associated with addiction vulnerability. Our findings have been substantiated 

in follow-up studies showing reduced D2/3 receptor expression and binding in the NAcb shell of 

high-impulsive rats (Besson et al., 2009, Caprioli et al., 2015, Jupp et al., 2013). However, it 

remains unclear whether the high impulsivity ‘trait’ is associated with fewer autoreceptors 

and/or postsynaptic D2/3 receptors. In humans, trait impulsivity is associated with reduced 

D2/3 receptor availability in the midbrain (Buckholtz et al., 2010) and studies in transgenic 

mice show that D2/3 autoreceptors critically modulate primary and conditioned drug reward 

(Bello et al., 2011, Holroyd et al., 2015). As well as exhibiting abnormalities in D2/3 receptor 

regulation we also observed reduced grey matter density, glutamate decarboxylase (catalysing GABA 

synthesis), and dendritic spine and microtubule markers in the NAcb core of high-impulsive rats 

(Caprioli et al., 2014). Thus several, possibly interacting mechanisms at the level of the NAcb 

underlie the expression of the high impulsivity phenotype and these may be relevant to the evident 

vulnerability of impulsive rats to psychostimulant drugs.  

 There is burgeoning evidence for familial and genetic origins of ADHD (Sullivan et al., 

2012) with rates of heritability as high as 75% (Faraone & Biederman, 2005, Faraone et al., 

2000). Evidence for a genetic basis of impulsivity has also been advanced in experimental 

animals using various inbred rodent strains that express high levels of impulsive behavior 

(Loos et al., 2009, Moreno et al., 2010, Russell et al., 2005). Several functional genetic 
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variants associated with impulsive behavior have been identified, including the HTR2B gene 

encoding the 5-HT2B receptor (Bevilacqua et al., 2010). In a recent study (Dalley et al. 

unpublished data) using a six-generational inbred pedigree of low- and high-impulsive rats 

and 629 offspring we established that 5-CSRTT impulsivity segregates within families with 

heritability estimates ranging from 13 to 16%.  

 Using integrated transcriptional profiling and linkage analysis we also discovered that 

impulsivity was linked to a statistically-significant quantitative trait locus on chromosome 1 

(LOD score 5.2) harbouring several candidate genes of interest for impulsivity. In particular, 

our analysis implicated Grm5 (metabotropic glutamate receptor 5), a promising target to 

remediate impulsivity and stimulant drug-seeking (Chesworth et al., 2013, Isherwood et al., 

2015, Liu et al., 2008); Sv2b (synaptic vesicle glycoprotein 2B), implicated in regulating 

release at GABA-ergic and glutamatergic synapses (Bragina et al., 2011); and Sema4b 

(semaphorin 4B), involved in the growth of neurons and formation of glutamatergic and 

GABA-ergic synapses (Paradis et al., 2007). Thus, drugs that target glutamatergic and 

GABA-ergic neurotransmission may have efficacy in blocking the ‘switch’ from 

controlled to compulsive drug use (and see Kalivas & Volkow, 2011). 

 

 

Sign-/goal-tracking 

Cues associated with natural and drug rewards can through conditioning acquire 

motivational significance (Robinson & Berridge, 1993) and provoke craving and relapse 

in humans addicted to drugs (O'brien et al., 1992b) and affect the maintenance and 

reinstatement of drug self-administration in animals (Arroyo et al., 1998, Shaham et al., 

2003). However, rats vary considerably in the level of control exerted by reward-related 

cues and can be segregated according to so-called sign-trackers that readily approach 

the location of reward cues whereas goal trackers instead learn to approach the location 

of the reward itself (Flagel et al., 2007, Robinson et al., 2014, Tomie et al., 1989). Sigh-
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trackers show higher breakpoints for cocaine under a progression ratio schedule and 

more readily reinstate drug-seeking behavior than goal-tracking rats (Fig.1) (Saunders 

& Robinson, 2011). They are also more impulsive on a 2-choice serial reaction time task 

(Lovic et al., 2011) and choose cocaine over food more often than goal-trackers (Tunstall 

& Kearns, 2015, but see Vanhille et al., 2015). Thus, sign-tracking appears to be an 

addiction-prone endophenotype that co-segregates with impulsivity. By contrast, 

contextual cues appear to exert greater effects on drug-seeking in goal-trackers than 

sign-trackers suggesting an additional level of specification in how discrete and 

contextual cues influence drug seeking and relapse (Robinson et al., 2014).   

 

Adolescence and risk taking behavior 

Adolescence is a critical developmental window widely associated with drug 

experimentation and risk taking behavior (Casey & Jones, 2010). It is a period when 

young people become increasingly independent members of society where social 

acceptance and peers, rather than parents, become more important for day-to-day 

decisions (Blakemore & Robbins, 2012). Although the developmental trajectory of risk-

taking behavior is controversial (Reyna & Farley, 2006) many have argued that 

adolescents are predisposed to risky decisions because they are hyper-responsive to 

rewards (Braams et al., 2015) and lack the capacity for self-restraint and emotional 

regulation (Casey & Jones, 2010).  Neurally, this may reflect the delayed and protracted 

maturation of cortical control systems within the prefrontal cortex relative to incentive-

and stress-based sub-cortical systems (Somerville et al., 2010, Spear, 2000). Such 

predetermined variations in neural development may contribute to heightened risk-

taking and impulsivity in adolescents (Blakemore & Robbins, 2012) and the potential 

for drug use during this critical period causing irrevocable harm (Selemon, 2013). 

 Adolescence is also a critical period for social development where individuals 

learn to engage in dynamic and flexible relationships. Social experience during this 
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period has profound effects on neural and behavioral development. Thus, rats isolated 

from other rats during the peri-adolescence period show a heightened locomotor 

reactivity to novelty and behavioral sensitivity to psychostimulant drugs (Baarendse et 

al., 2014, Fone & Porkess, 2008), as well as increased alcohol consumption (Lesscher et 

al., 2015). This social intervention also have protracted effects on prefrontal and striatal 

circuits (Bianchi et al., 2006, Dalley et al., 2002, Hall et al., 1998) consistent with 

evidence that social play depends on the integrity of prefrontal cortex and striatum 

(Van Kerkhof et al., 2013).  

 

Protective mechanisms 

Studies in humans have identified a myriad of genetic and environmental mechanisms that 

afford protection against alcoholism and other drug addictions. For example, genetic 

variation in alcohol and aldehyde dehydrogenases, enzymes responsible for the metabolism 

of alcohol, prevents heavy drinking in certain Asian and Jewish groups due the rapid 

accumulation of the toxic metabolite acetaldehyde responsible for facial flushing, 

palpitations, nausea and vomiting (e.g. Neumark et al., 2004). In other examples, gene 

variants that increase MAO function confer resilience against conduct disorder and antisocial 

behavior, frequent behavioral precursors to addiction (Caspi et al., 2002). In many of these 

examples it is clear that genetic vulnerabilities depend on environmental elements for their 

full impact to be realised (Enoch, 2006, Johnson et al., 1996, Kreek et al., 2005). However, it 

is interesting to note that in alcoholic families where presumably many environmental 

features are shared, high levels of D2 receptor availability in the striatum appear to provide 

protection against alcoholism (Volkow et al., 2006). Thus, as demonstrated recently, the 

balance between inherited and environmental risk and protective factors may be critical in 

determining whether individual siblings are susceptible or resistant to addiction (Ersche et 

al., 2012, Volkow & Baler, 2012). 
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 Research in animals supports the concept of resilience but relatively few studies have 

been carried out to investigate specific neurobiological mechanisms. Some notable examples 

include the demonstration that social defeat stress reinstates cocaine preference in wild-type 

mice but not in mice selectively deleted of the alpha isoform of the p38 mitogen-activated 

protein kinase (MAPK) in serotonergic neurons of the dorsal raphé nucleus (Bruchas et al., 

2011). Further, in a related study, resilience was shown to result from the overexpression of 

the histone methytransferase, G9a, in the NAcb, which protected mice from social defeat 

stress (Covington et al., 2011).  More recently, optogenetic activation of NAcb medium 

spiny neurons, which express D2 receptors, has been shown to protect against the 

development of compulsive cocaine self-administration in mice (Bock et al., 2013). Other 

evidence suggests that cognitive intervention may be sufficient to promote resilience. Thus, 

in a recent study, the long-term effects of cognitive training on cocaine-seeking behavior in 

mice were investigated after animals were returned to their deprived housing conditions 

(Boivin et al., 2015). During “cognitive training” mice learned to dig for cereal rewards using 

odors, textures, and location as cues. It was found that this form of cognitive training was 

sufficient to produce a long-lasting reduction in the maintenance of a conditioned place 

preference for cocaine. Thus, cognitive intervention may overcome adversity and deprivation 

and thereby promote resilience to drug-seeking behavior. In other research, with similar 

translatable relevance to human addiction, it was found that under specific operant settings 

rats naturally prefer a sweetened saccharin solution over cocaine (Lenoir et al., 2007, but see 

Vanhille et al., 2015). Remarkably, fewer than 15% of animals with extensive cocaine 

exposure continued to take cocaine when offered a choice. Most animals voluntarily 

extinguished in favour of the non-drug alternative (see also Caprioli et al., 2015). This study 

demonstrates that the minority of rats, like humans, are vulnerable to develop drug addiction.  

 Specific ‘traits’ may also confer resilience to addiction. In particular the propensity to 

acquire and self-administer stimulant drugs appears to depend on mechanisms distinct from 

those underlying the shift to compulsive drug seeking and taking. Thus, in a study by Belin 
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and colleagues, LR and HR rats were given extended access to daily intravenous cocaine and 

subsequently assessed for each of the three addiction-like criteria (Belin et al., 2008). 

Surprisingly, both groups of animals were represented in the 0 and 1crit categories (i.e. 

resilient to addiction) confirming that locomotor reactivity to novelty does not predict the 

vulnerability to develop cocaine addiction but rather the propensity to self-administer 

psychostimulant drugs (Belin et al., 2008, Piazza et al., 1989). Indeed this conclusion was 

corroborated by the finding that HR rats show a progressive decline in responding for cocaine 

in the presence of an alternative (saccharin) reinforcer (Vanhille et al., 2015). Thus, HR rats 

may be a valuable phenotype to investigate the neurobiological mechanisms underlying 

resilience to psychostimulant drug addiction.  

 

Concluding remarks 

Addiction to psychoactive drugs causes irrevocable harm to individuals, families, 

communities and the wider society. Despite recognising how addictive substances produce 

their pleasurable or rewarding effects through selective actions in the brain, it is still unclear 

why only a subset of all people exposed to drugs, including alcohol, subsequently become 

addicted. Few would disagree though that addiction involves complex interactions between 

environmental and polygenic factors, escalating cycles of binge drug intake and withdrawal, 

and a “vulnerable” host (Kreek et al., 2005, Uhl, 2006). The seeming failure of preclinical 

research to develop a truly effective medications for addiction reflects in part the multivariate 

nature of this disorder, including the often personal reasons why people abuse particular 

drugs (Khantzian, 1985, Khantzian, 1990) and the hitherto narrow focus of animal research 

on drug reinforcement and the brain DA systems. The challenge for future research will be to 

recognise that addiction is a progressive disorder and to some extent idiosyncratic. However, 

the research reviewed in this article, suggests that adopting a dimensional approach to define 

specific behavioral endophenotypes characterised in aggregate by genes, molecules, and 
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circuits would reveal a deeper understanding of both protective and vulnerability mechanisms 

in addiction.   
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