37,232 research outputs found

    GRAVSAT/GEOPAUSE covariance analysis including geopotential aliasing

    Get PDF
    A conventional covariance analysis for the GRAVSAT/GEOPAUSE mission is described in which the uncertainties of approximately 200 parameters, including the geopotential coefficients to degree and order 12, are estimated over three different tracking intervals. The estimated orbital uncertainties for both GRAVSAT and GEOPAUSE reach levels more accurate than presently available. The adjusted measurement bias errors approach the mission goal. Survey errors in the low centimeter range are achieved after ten days of tracking. The ability of the mission to obtain accuracies of geopotential terms to (12, 12) one to two orders of magnitude superior to present accuracy levels is clearly shown. A unique feature of this report is that the aliasing structure of this (12, 12) field is examined. It is shown that uncertainties for unadjusted terms to (12, 12) still exert a degrading effect upon the adjusted error of an arbitrarily selected term of lower degree and order. Finally, the distribution of the aliasing from the unestimated uncertainty of a particular high degree and order geopotential term upon the errors of all remaining adjusted terms is listed in detail

    Simulation of the Gravsat/Geopause mission

    Get PDF
    A simulation of the proposed low Gravsat and high Geopause satellite mission is presented. This mission promises fundamental improvements in the accuracy of low order geopotential coefficients by using satellite-to-satellite tracking technology coupled with a global sampling of the gravity field. Ten days of data from six stations are assumed. A drag compensation system for the low satellite is also postulated. The results show a one to two order of magnitude improvement in the accuracy of the low order coefficients through degree 8 and order 6. These results are easily adjusted to reflect a different data accuracy level and low satellite altitude

    Long and short arc altitude determination for GEOS-C

    Get PDF
    The accuracy with which the GEOS-C altitude may be estimated over long (7 day) and short (40 minute) orbital arcs is investigated. Over the long are excellent agreement was attained between a simulation of the orbit determination process and a covariance analysis. Both approaches yielded RMS altitude errors of about 1.5 meters over the Caribbean calibration area and approximately 7.5 meters overall. The geopotential was identified as the largest error source. For the short arc, the covariance analysis revealed that the propagated altitude error is linearly dependent upon station survey component errors which are also the largest source of altitude errors. An Appendix contains the mathematics of covariance analysis as applied to orbit determination

    Orbit/attitude estimation for the GOES spacecraft using VAS landmark data

    Get PDF
    A software system is described which provides for batch least squares estimation of spacecraft orbit, attitude, and camera bias parameters using image data from the Geostationary Operational Environmental Satellites (GOES). The image data are obtained by the Visible and Infrared Spin Scan Radiometer (VISSR) Atmospheric Sounder (VAS). The resulting estimated parameters are used for absolute image registration. Operating in the Digital Equipment Corporation (DEC) PDP-11/70 computer, the FORTRAN system also includes the capabilities of image display and manipulations. An overview of the system is presented as well as some numerical results obtained from observations taken by the SMS-2 satellite over a 3 day interval in August 1975

    Infrared measurements of spacecraft glow planned for Spacelab 2

    Get PDF
    A liquid helium cooled infrared telescope (IRT) was to be flown in July 1985 on Spacelab 2. The instrument is designed to measure both diffuse and discrete infrared astronomical sources, including the zodiacal light, galactic, and extragalactic components, as well as to evaluate the induced Orbiter environment. The focal plane contains ten photoconductive detectors covering six broad bands from 2 to 120 microns. Each detector has a 0.5 by 1.0 deg field of view optimized for detection of extended sources of IR radiation. Except for the 2 micron detector, the system noise is limited by the sky background noise. The measurements planned for the IRT use the 1 meter base of the Plasma Diagnostic Package (PDP), an already existing SL 2 experiment, as the glow generating surface. The measurements are repeated changing the position of the PDP, the attitude of the Orbiter, and the ram direction in an effort to remove both the thermal component of the PDP emission and the cosmic background radiation

    Nimbus 6 Doppler processing using the Fairbanks calibration platform

    Get PDF
    A weighted least squares processor is examined. Research conducted in support of the NASA satellite aided Search and Rescue program is presented. An estimated NIMBUS 6 ephemeris, accurate to 1.5-2.5 km and 0.5-2.5 m/s relative to a reference orbit, is obtained during the three day signal transmission period. This suggests updating the knowledge of the relay satellite ephemeris by one reference beacon is needed during the Search and Rescue demonstration

    Detection of Other Planetary Systems Using Photometry

    Get PDF
    Detection of extrasolar short-period planets, particularly if they are in the liquid-water zone, would be one of the most exciting discoveries of our lifetime. A well-planned space mission has the capability of making this discovery using the photometric method. An Earth-sized planet transiting a Sun-like star will cause a decrease in the apparent luminosity of the star by one part in 10,000 with a duration of about 12 hours and a period of about one year. Given a random orientation of orbital plane alignments with the line-of-sight to a star, and assuming our solar system to be typical, one would expect 1 percent of the stars monitored to exhibit planetary transits. A null result would also be significant and indicate that Earth-sized planets are rare. For the mission to be successful one needs a sensor system that can simultaneously monitor many thousands of stars with a photometric precision of one part in 30,000 per hour of integration. Confirmation of a detection will involve detection of a second transit that will yield a period and predict the time for a third and subsequent transits. The technology issues that need to be addressed are twofold: one is for an appropriate optical design; the other is for a detector system with the necessary photometric precision. Two candidates for the detector system are silicon diodes and CCD's
    corecore