94,785 research outputs found

    Power load forecasting

    Get PDF
    For the electric power factory, the power load forecasting problem, including load forecasting and consumption predicting, is crucial to work planning. According to the predicting time, it can be divided into long-term forecasting, mid-term forecasting, short-term forecasting and ultra-short-term forecasting. The long-term and mid-term forecasting are mainly used for macro control, and their forecasting time arrange are from one year to ten years and from one month to twelve months respectively. The short-term forecasting which prediction time is from one day to seven days is used in generators macroeconomic control, power exchange plan and some other areas. Predicting the situation in next 24 hours is named as the ultra-short-term forecasting which is used for failure prediction, emergency treatment and frequency control. In general, the forecast accuracy is different for different prediction time. The longer is the time, the lower accurate is the prediction. As the unique power supplier in Huizhou (China), Huizhou Electric Power wants to know the solution to the problems: 1. Prediction of the total electrical consumption and the peak load of the city in 2006 based on the economy development and the feature of the city. 2. Monthly prediction of the consumption and peak load in 2006. 3. Daily prediction of the consumption and peak load from July 10th to 16th in 2006. 4. Prediction of the load every 15 minutes of July 10th. 5. Real-time forecasting which means to amend the existing load prediction for next 15 minute

    Symmetry protected fractional Chern insulators and fractional topological insulators

    Full text link
    In this paper we construct fully symmetric wavefunctions for the spin-polarized fractional Chern insulators (FCI) and time-reversal-invariant fractional topological insulators (FTI) in two dimensions using the parton approach. We show that the lattice symmetry gives rise to many different FCI and FTI phases even with the same filling fraction Îœ\nu (and the same quantized Hall conductance σxy\sigma_{xy} in FCI case). They have different symmetry-protected topological orders, which are characterized by different projective symmetry groups. We mainly focus on FCI phases which are realized in a partially filled band with Chern number one. The low-energy gauge groups of a generic σxy=1/m⋅e2/h\sigma_{xy}=1/m\cdot e^2/h FCI wavefunctions can be either SU(m)SU(m) or the discrete group ZmZ_m, and in the latter case the associated low-energy physics are described by Chern-Simons-Higgs theories. We use our construction to compute the ground state degeneracy. Examples of FCI/FTI wavefunctions on honeycomb lattice and checkerboard lattice are explicitly given. Possible non-Abelian FCI phases which may be realized in a partially filled band with Chern number two are discussed. Generic FTI wavefunctions in the absence of spin conservation are also presented whose low-energy gauge groups can be either SU(m)×SU(m)SU(m)\times SU(m) or Zm×ZmZ_m\times Z_m. The constructed wavefunctions also set up the framework for future variational Monte Carlo simulations.Comment: 24 pages, 13 figures, published versio

    Applications of inverse simulation to a nonlinear model of an underwater vehicle

    Get PDF
    Inverse simulation provides an important alternative to conventional simulation and to more formal mathematical techniques of model inversion. The application of inverse simulation methods to a nonlinear dynamic model of an unmanned underwater vehicle with actuator limits is found to give rise to a number of challenging problems. It is shown that this particular problem requires, in common with other applications that include hard nonlinearities in the model or discontinuities in the required trajectory, can best be approached using a search-based optimization algorithm for inverse simulation in place of the more conventional Newton- Raphson approach. Results show that meaningful inverse simulation results can be obtained but that multi-solution responses exist. Although the inverse solutions are not unique they are shown to generate the required trajectories when tested using conventional forward simulation methods

    Can the jet steepen the light curves of GRB afterglow?

    Full text link
    Beaming of relativistic ejecta in GRBs has been postulated by many authors in order to reduce the total GRB energy, thus it is very important to look for the observational evidence of beaming. Rhoads (1999) has pointed out that the dynamics of the blast wave, which is formed when the beamed ejecta sweeping the external medium, will be significantly modified by the sideways expansion due to the increased swept up matter. He claimed that shortly after the bulk Lorentz factor (Γ\Gamma ) of the blast wave drops below the inverse of the initial opening angle (ξ0\theta_{0}) of the beamed ejecta, there will be a sharp break in the afterglow light curves. However, some other authors have performed numerical calculations and shown that the break of the light curve is weaker and much smoother than the one analytically predicted. In this paper we reanalyse the dynamical evolution of the jet blast wave, calculate the jet emission analytically, we find that the sharp break predicted by Rhoads will actually not exist, and for most cases the afterglow light curve will almost not be affected by sideways expansion unless the beaming angle is extremely small. We demonstrate that only when ξ0<0.1\theta_{0}<0.1, the afterglow light curves may be steepened by sideways expansion, and in fact there cannot be two breaks as claimed before. We have also constructed a simple numerical code to verify our conclusion.Comment: 12 pages, 2 figures, accepted by ApJ, added numerical calculation

    Strangeness production in heavy ion collisions at SPS and RHIC within two-source statistical model

    Full text link
    The experimental data on hadron yields and ratios in central Pb+Pb and Au+Au collisions at SPS and RHIC energies, respectively, are analysed within a two-source statistical model of an ideal hadron gas. These two sources represent the expanding system of colliding heavy ions, where the hot central fireball is embedded in a larger but cooler fireball. The volume of the central source increases with rising bombarding energy. Results of the two-source model fit to RHIC experimental data at midrapidity coincide with the results of the one-source thermal model fit, indicating the formation of an extended fireball, which is three times larger than the corresponding core at SPS.Comment: Talk at "Strange Quarks in Matter" Conference (Strangeness'2001), September 2001, Frankfurt a.M., German

    Scalable Text and Link Analysis with Mixed-Topic Link Models

    Full text link
    Many data sets contain rich information about objects, as well as pairwise relations between them. For instance, in networks of websites, scientific papers, and other documents, each node has content consisting of a collection of words, as well as hyperlinks or citations to other nodes. In order to perform inference on such data sets, and make predictions and recommendations, it is useful to have models that are able to capture the processes which generate the text at each node and the links between them. In this paper, we combine classic ideas in topic modeling with a variant of the mixed-membership block model recently developed in the statistical physics community. The resulting model has the advantage that its parameters, including the mixture of topics of each document and the resulting overlapping communities, can be inferred with a simple and scalable expectation-maximization algorithm. We test our model on three data sets, performing unsupervised topic classification and link prediction. For both tasks, our model outperforms several existing state-of-the-art methods, achieving higher accuracy with significantly less computation, analyzing a data set with 1.3 million words and 44 thousand links in a few minutes.Comment: 11 pages, 4 figure

    Phase structures of strong coupling lattice QCD with overlap fermions at finite temperature and chemical potential

    Full text link
    We perform the first study of lattice QCD with overlap fermions at finite temperature TT and chemical potential Ό\mu. We start from the Taylor expanded overlap fermion action, and derive in the strong coupling limit the effective free energy by mean field approximation. On the (Ό,T\mu,T) plane and in the chiral limit, there is a tricritical point, separating the second order chiral phase transition line at small Ό\mu and large TT, and first order chiral phase transition line at large Ό\mu and small TT

    Localization of Bulk Form Fields on Dilatonic Domain Walls

    Get PDF
    We study the localization properties of bulk form potentials on dilatonic domain walls. We find that bulk form potentials of any ranks can be localized as form potentials of the same ranks or one lower ranks, for any values of the dilaton coupling parameter. For large enough values of the dilaton coupling parameter, bulk form potentials of any ranks can be localized as form potentials of both the same ranks and one lower ranks.Comment: 9 pages, LaTeX, reference adde

    Sensitivity-analysis method for inverse simulation application

    Get PDF
    An important criticism of traditional methods of inverse simulation that are based on the Newton–Raphson algorithm is that they suffer from numerical problems. In this paper these problems are discussed and a new method based on sensitivity-analysis theory is developed and evaluated. The Jacobian matrix may be calculated by solving a sensitivity equation and this has advantages over the approximation methods that are usually applied when the derivatives of output variables with respect to inputs cannot be found analytically. The methodology also overcomes problems of input-output redundancy that arise in the traditional approaches to inverse simulation. The sensitivity- analysis approach makes full use of information within the time interval over which key quantities are compared, such as the difference between calculated values and the given ideal maneuver after each integration step. Applications to nonlinear HS125 aircraft and Lynx helicopter models show that, for this sensitivity-analysis method, more stable and accurate results are obtained than from use of the traditional Newton–Raphson approach
    • 

    corecore