Beaming of relativistic ejecta in GRBs has been postulated by many authors in
order to reduce the total GRB energy, thus it is very important to look for the
observational evidence of beaming. Rhoads (1999) has pointed out that the
dynamics of the blast wave, which is formed when the beamed ejecta sweeping the
external medium, will be significantly modified by the sideways expansion due
to the increased swept up matter. He claimed that shortly after the bulk
Lorentz factor (Γ) of the blast wave drops below the inverse of the
initial opening angle (θ0) of the beamed ejecta, there will be a
sharp break in the afterglow light curves. However, some other authors have
performed numerical calculations and shown that the break of the light curve is
weaker and much smoother than the one analytically predicted. In this paper we
reanalyse the dynamical evolution of the jet blast wave, calculate the jet
emission analytically, we find that the sharp break predicted by Rhoads will
actually not exist, and for most cases the afterglow light curve will almost
not be affected by sideways expansion unless the beaming angle is extremely
small. We demonstrate that only when θ0<0.1, the afterglow light
curves may be steepened by sideways expansion, and in fact there cannot be two
breaks as claimed before. We have also constructed a simple numerical code to
verify our conclusion.Comment: 12 pages, 2 figures, accepted by ApJ, added numerical calculation