1,192 research outputs found
Magneto-transport in periodic and quasiperiodic arrays of mesoscopic rings
We study theoretically the transmission properties of serially connected
mesoscopic rings threaded by a magnetic flux. Within a tight-binding formalism
we derive exact analytical results for the transmission through periodic and
quasiperiodic Fibonacci arrays of rings of two different sizes. The role played
by the number of scatterers in each arm of the ring is analyzed in some detail.
The behavior of the transmission coefficient at a particular value of the
energy of the incident electron is studied as a function of the magnetic flux
(and vice versa) for both the periodic and quasiperiodic arrays of rings having
different number of atoms in the arms. We find interesting resonance properties
at specific values of the flux, as well as a power-law decay in the
transmission coefficient as the number of rings increases, when the magnetic
field is switched off. For the quasiperiodic Fibonacci sequence we discuss
various features of the transmission characteristics as functions of energy and
flux, including one special case where, at a special value of the energy and in
the absence of any magnetic field, the transmittivity changes periodically as a
function of the system size.Comment: 9 pages with 7 .eps figures included, submitted to PR
Effect of incoherent scattering on shot noise correlations in the quantum Hall regime
We investigate the effect of incoherent scattering in a Hanbury Brown and
Twiss situation with electrons in edge states of a three-terminal conductor
submitted to a strong perpendicular magnetic field. The modelization of
incoherent scattering is performed by introducing an additional voltage probe
through which the current is kept equal to zero which causes voltage
fluctuations at this probe. It is shown that inelastic scattering can lead in
this framework to positive correlations, whereas correlations remain always
negative for quasi-elastic scattering.Comment: 5 pages latex, 5 eps figure
Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma
Laser–plasma interaction (LPI) at intensities 1015–1016 W cm2 is dominated by parametric instabilities which can be
responsible for a significant amount of non-collisional absorption and generate large fluxes of high-energy nonthermal
electrons. Such a regime is of paramount importance for inertial confinement fusion (ICF) and in particular for the
shock ignition scheme. In this paper we report on an experiment carried out at the Prague Asterix Laser System (PALS)
facility to investigate the extent and time history of stimulated Raman scattering (SRS) and two-plasmon decay (TPD)
instabilities, driven by the interaction of an infrared laser pulse at an intensity 1:2 1016 W cm2 with a 100 mm
scalelength plasma produced from irradiation of a flat plastic target. The laser pulse duration (300 ps) and the high
value of plasma temperature (4 keV) expected from hydrodynamic simulations make these results interesting for a
deeper understanding of LPI in shock ignition conditions. Experimental results show that absolute TPD/SRS, driven at
a quarter of the critical density, and convective SRS, driven at lower plasma densities, are well separated in time, with
absolute instabilities driven at early times of interaction and convective backward SRS emerging at the laser peak and
persisting all over the tail of the pulse. Side-scattering SRS, driven at low plasma densities, is also clearly observed.
Experimental results are compared to fully kinetic large-scale, two-dimensional simulations. Particle-in-cell results,
beyond reproducing the framework delineated by the experimental measurements, reveal the importance of filamentation
instability in ruling the onset of SRS and stimulated Brillouin scattering instabilities and confirm the crucial role of
collisionless absorption in the LPI energy balance
Effects of dual task on turning ability in stroke survivors and older adults
Background: Turning is an integral component of independent mobility in which stroke survivors frequently fall. Objective: This study sought to measure the effects of competing cognitive demands on the stepping patterns of stroke survivors, compared to healthy age-match adults, during turning as a putative mechanism for falls. Methods: Walking and turning (90º) was assessed under single (walking and turning alone) and dual task (subtracting serial 3s while walking and turning) conditions using an electronic, pressure-sensitive walkway. Dependent measures were time to turn, variability in time to turn, step length, step width and single support time during three steps of the turn. Turning ability in single and dual task conditions was compared between stroke survivors (n= 17, mean ± SD: 59 ± 113 months post-stroke, 64 ± 10 years of age) and age-matched healthy counterparts (n = 15). Results: Both groups took longer, were more variable, tended to widen the second step and, crucially, increased single support time on the inside leg of the turn while turning and distracted. Conclusions. Increased single support time during turning may represent biomechanical mechanism, within stepping patterns of turning under distraction, for increased risk of falls for both stroke survivors and older adults
Conductance and persistent current of a quantum ring coupled to a quantum wire under external fields
The electronic transport of a noninteracting quantum ring side-coupled to a
quantum wire is studied via a single-band tunneling tight-binding Hamiltonian.
We found that the system develops an oscillating band with antiresonances and
resonances arising from the hybridization of the quasibound levels of the ring
and the coupling to the quantum wire. The positions of the antiresonances
correspond exactly to the electronic spectrum of the isolated ring. Moreover,
for a uniform quantum ring the conductance and the persistent current density
were found to exhibit a particular odd-even parity related with the ring-order.
The effects of an in-plane electric field was also studied. This field shifts
the electronic spectrum and damps the amplitude of the persistent current
density. These features may be used to control externally the energy spectra
and the amplitude of the persistent current.Comment: Revised version, 7 pages and 9 figures. To appear in Phys. Rev.
Kondo resonances and Fano antiresonances in transport through quantum dots
The transmission of electrons through a non-interacting tight-binding chain
with an interacting side quantum dot (QD) is analized. When the Kondo effect
develops at the dot the conductance presents a wide minimum, reaching zero at
the unitary limit. This result is compared to the opposite behaviour found in
an embedded QD. Application of a magnetic field destroys the Kondo effect and
the conductance shows pairs of dips separated by the charging energy U. The
results are discussed in terms of Fano antiresonances and explain qualitatively
recent experimental results.Comment: 4 pages including 4 figure
Which phase is measured in the mesoscopic Aharonov-Bohm interferometer?
Mesoscopic solid state Aharonov-Bohm interferometers have been used to
measure the "intrinsic" phase, , of the resonant quantum
transmission amplitude through a quantum dot (QD). For a two-terminal "closed"
interferometer, which conserves the electron current, Onsager's relations
require that the measured phase shift only "jumps" between 0 and .
Additional terminals open the interferometer but then depends on the
details of the opening. Using a theoretical model, we present quantitative
criteria (which can be tested experimentally) for to be equal to the
desired : the "lossy" channels near the QD should have both a
small transmission and a small reflection
Training dual-task walking in community-dwelling adults within 1 year of stroke: A protocol for a single-blind randomized controlled trial
Background: Community ambulation is a highly complex skill requiring the ability to adapt to increased environmental complexity and perform multiple tasks simultaneously. After stroke, individuals demonstrate a diminished ability to perform dual-tasks. Current evidence suggests that conventional rehabilitation does not adequately address gait-related dual-task impairments after stroke, which may be contributing to low levels of participation and physical inactivity in community-dwelling stroke survivors. The objective of this study is to investigate the efficacy of dual-task gait training in community-dwelling adults within 1 year of stroke. Specifically, we will compare the effects of dual-task gait training and single-task gait training on cognitive-motor interference during walking at preferred speed and at fastest comfortable speed (Aim 1), locomotor control during obstacle negotiation (Aim 2), and spontaneous physical activity (Aim 3). Methods/design: This single-blind randomized controlled trial will involve 44 individuals within 12 months of stroke. Following baseline evaluation, participants will be randomly allocated to single- or dual-task gait training. Both groups will receive 12, 30-minute sessions provided one-on-one over 4–6 weeks in an outpatient therapy setting. Single-task gait training involves practice of gait activities incorporating motor relearning principles. Dual-task gait training involves an identical gait training protocol; the critical difference being that the dual-task gait training group will practice the gait activities while simultaneously performing a cognitive task for 75% of the repetitions. Blinded assessors will measure outcomes at baseline, post-intervention, and 6 months after completion of the intervention. The primary outcome measure will be dual-task effects on gait speed and cognition during unobstructed walking. Secondary outcomes include spatiotemporal and kinetic gait parameters during unobstructed single- and dual-task walking at preferred and fastest comfortable walking speeds, gait parameters during high and low obstacle crossing, spontaneous physical activity, executive function, lower extremity motor function, Timed Up and Go, balance self-efficacy, number of falls, and stroke-related disability. Hypotheses for each aim will be tested using an intention-to-treat analysis with repeated measures ANOVA design. Discussion: This trial will provide evidence to help clinicians make decisions about the types of activities to include in rehabilitation to improve dual-task walking after stroke
Green function techniques in the treatment of quantum transport at the molecular scale
The theoretical investigation of charge (and spin) transport at nanometer
length scales requires the use of advanced and powerful techniques able to deal
with the dynamical properties of the relevant physical systems, to explicitly
include out-of-equilibrium situations typical for electrical/heat transport as
well as to take into account interaction effects in a systematic way.
Equilibrium Green function techniques and their extension to non-equilibrium
situations via the Keldysh formalism build one of the pillars of current
state-of-the-art approaches to quantum transport which have been implemented in
both model Hamiltonian formulations and first-principle methodologies. We offer
a tutorial overview of the applications of Green functions to deal with some
fundamental aspects of charge transport at the nanoscale, mainly focusing on
applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references,
submitted to Springer series "Lecture Notes in Physics
Seasonal effects on reconciliation in Macaca Fuscata Yakui
Dietary composition may have profound effects on the activity budgets, levelof food competition, and social behavior of a species. Similarly, in seasonally breeding species, the mating season is a period in which competition for mating partners increases, affecting amicable social interactions among group members. We analyzed the importance of the mating season and of seasonal variations in dietary composition and food competition on econciliation
in wild female Japanese macaques (Macaca fuscata yakui) on Yakushima Island, Japan. Yakushima macaques are appropriate subjects because they are seasonal breeders and their dietary composition significantly changes among the seasons. Though large differences occurred between the summer months and the winter and early spring months in activity budgets and the consumption of the main food sources, i.e., fruits, seeds, and leaves, the level
of food competition and conciliatory tendency remained unaffected. Conversely,conciliatory tendency is significantly lower during the mating season than in the nonmating season. Moreover, conciliatory tendency is lower when 1 or both female opponents is in estrous than when they are not. Thus the mating season has profound effects on reconciliation, whereas seasonal changes in activity budgets and dietary composition do not. The detrimental effects of the mating season on female social relationships and reconciliation may be due to the importance of female competition for access to male partners in multimale, multifemale societies
- …
