733 research outputs found

    Bayesian co-estimation of selfing rate and locus-specific mutation rates for a partially selfing population

    Full text link
    We present a Bayesian method for characterizing the mating system of populations reproducing through a mixture of self-fertilization and random outcrossing. Our method uses patterns of genetic variation across the genome as a basis for inference about pure hermaphroditism, androdioecy, and gynodioecy. We extend the standard coalescence model to accommodate these mating systems, accounting explicitly for multilocus identity disequilibrium, inbreeding depression, and variation in fertility among mating types. We incorporate the Ewens Sampling Formula (ESF) under the infinite-alleles model of mutation to obtain a novel expression for the likelihood of mating system parameters. Our Markov chain Monte Carlo (MCMC) algorithm assigns locus-specific mutation rates, drawn from a common mutation rate distribution that is itself estimated from the data using a Dirichlet Process Prior (DPP) model. Among the parameters jointly inferred are the population-wide rate of self-fertilization, locus-specific mutation rates, and the number of generations since the most recent outcrossing event for each sampled individual

    ‘What are you going to do, confiscate their passports?’ Professional perspectives on cross-border reproductive travel

    Get PDF
    Objective: This article reports findings from a UK-based study which explored the phenomenon of overseas travel for fertility treatment. The first phase of this project aimed to explore how infertility clinicians and others professionally involved in fertility treatment understand the nature and consequences of cross-border reproductive travel. Background: There are indications that, for a variety of reasons, people from the UK are increasingly travelling across national borders to access assisted reproductive technologies. While research with patients is growing, little is known about how ‘fertility tourism’ is perceived by health professionals and others with a close association with infertility patients. Methods: Using an interpretivist approach, this exploratory research included focussed discussions with 20 people professionally knowledgeable about patients who had either been abroad or were considering having treatment outside the UK. Semi-structured interviews were recorded, transcribed verbatim and subjected to a thematic analysis. Results: Three conceptual categories are developed from the data: ‘the autonomous patient’; ‘cross-border travel as risk’, and ‘professional responsibilities in harm minimisation’. Professionals construct nuanced, complex and sometimes contradictory narratives of the ‘fertility traveller’, as vulnerable and knowledgeable; as engaged in risky behaviour and in its active minimisation. Conclusions: There is little support for the suggestion that states should seek to prevent cross-border treatment. Rather, an argument is made for less direct strategies to safeguard patient interests. Further research is required to assess the impact of professional views and actions on patient choices and patient experiences of treatment, before, during and after travelling abroad

    Extending the Capabilities of Closed-loop Distributed Engine Control Simulations Using LAN Communication

    Get PDF
    Distributed Engine Control (DEC) is an enabling technology that has the potential to advance the state-of-the-art in gas turbine engine control. To analyze the capabilities that DEC offers, a Hardware-In-the-Loop (HIL) test bed is being developed at NASA Glenn Research Center. This test bed will support a systems-level analysis of control capabilities in closed-loop engine simulations. The structure of the HIL emulates a virtual test cell by implementing the operator functions, control system, and engine on three separate computers. This implementation increases the flexibility and extensibility of the HIL. Here, a method is discussed for implementing these interfaces by connecting the three platforms over a dedicated Local Area Network (LAN). This approach is verified using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k), which is typically implemented on one computer. There are marginal differences between the results from simulation of the typical and the three-computer implementation. Additional analysis of the LAN network, including characterization of network load, packet drop, and latency, is presented. The three-computer setup supports the incorporation of complex control models and proprietary engine models into the HIL framework

    A Modular Framework for Modeling Hardware Elements in Distributed Engine Control Systems

    Get PDF
    Progress toward the implementation of distributed engine control in an aerospace application may be accelerated through the development of a hardware-in-the-loop (HIL) system for testing new control architectures and hardware outside of a physical test cell environment. One component required in an HIL simulation system is a high-fidelity model of the control platform: sensors, actuators, and the control law. The control system developed for the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) provides a verifiable baseline for development of a model for simulating a distributed control architecture. This distributed controller model will contain enhanced hardware models, capturing the dynamics of the transducer and the effects of data processing, and a model of the controller network. A multilevel framework is presented that establishes three sets of interfaces in the control platform: communication with the engine (through sensors and actuators), communication between hardware and controller (over a network), and the physical connections within individual pieces of hardware. This introduces modularity at each level of the model, encouraging collaboration in the development and testing of various control schemes or hardware designs. At the hardware level, this modularity is leveraged through the creation of a SimulinkR library containing blocks for constructing smart transducer models complying with the IEEE 1451 specification. These hardware models were incorporated in a distributed version of the baseline C-MAPSS40k controller and simulations were run to compare the performance of the two models. The overall tracking ability differed only due to quantization effects in the feedback measurements in the distributed controller. Additionally, it was also found that the added complexity of the smart transducer models did not prevent real-time operation of the distributed controller model, a requirement of an HIL system

    Natural killer cells and innate lymphoid cells but not NKT cells are mature in their cytokine production at birth.

    Get PDF
    Early life is a time of increased susceptibility to infectious diseases and development of allergy. Innate lymphocytes are crucial components of the initiation and regulation of immune responses at mucosal surfaces, but functional differences in innate lymphocytes early in life are not fully described. We aimed to characterise the abundance and function of different innate lymphocyte cell populations in cord blood in comparison to that of adults. Blood was collected from adult donors and umbilical vessels at birth. Multicolour flow cytometry panels were used to identify and characterise lymphocyte populations and their capacity to produce hallmark cytokines. Lymphocytes were more abundant in cord blood compared to adults, however, mucosal-associated invariant T (MAIT) cells and Natural Killer T (NKT)-like cells, were far less abundant. The capacity of NKT-like cells to produce cytokines and their expression of the cytotoxic granule protein granzyme B and the marker of terminal differentiation CD57 were much lower in cord blood than in adults. In contrast, Natural Killer (NK) cells were as abundant in cord blood as in adults, they could produce IFNγ, and their expression of granzyme B was not significantly different to that of adult NK cells, although CD57 expression was lower. All innate lymphoid cell (ILC) subsets were more abundant in cord blood, and ILC1 and ILC2 were capable of production of IFNγ and IL-13, respectively. In conclusion, different innate lymphoid cells differ in both abundance and function in peripheral blood at birth and with important implications for immunity in early life
    • …
    corecore