1,301 research outputs found
Alterations in the self-renewal and differentiation ability of bone marrow mesenchymal stem cells in a mouse model of rheumatoid arthritis
Introduction: Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease primarily involving the synovium. Evidence in recent years has suggested that the bone marrow (BM) may be involved, and may even be the initiating site of the disease. Abnormalities in haemopoietic stem cells' (HSC) survival, proliferation and aging have been described in patients affected by RA and ascribed to abnormal support by the BM microenvironment. Mesenchymal stem cells (MSC) and their progeny constitute important components of the BM niche. In this study we test the hypothesis that the onset of inflammatory arthritis is associated with altered self-renewal and differentiation of bone marrow MSC, which alters the composition of the BM microenvironment.
Methods: We have used Balb/C Interleukin-1 receptor antagonist knock-out mice, which spontaneously develop RA-like disease in 100% of mice by 20 weeks of age to determine the number of mesenchymal progenitors and their differentiated progeny before, at the start and with progression of the disease.
Results: We showed a decrease in the number of mesenchymal progenitors with adipogenic potential and decreased bone marrow adipogenesis before disease onset. This is associated with a decrease in osteoclastogenesis. Moreover, at the onset of disease a significant increase in all mesenchymal progenitors is observed together with a block in their differentiation to osteoblasts. This is associated with accelerated bone loss.
Conclusions: Significant changes occur in the BM niche with the establishment and progression of RA-like disease. Those changes may be responsible for aspects of the disease, including the advance of osteoporosis. An understanding of the molecular mechanisms leading to those changes may lead to new strategies for therapeutic intervention
Bayesian inference of ancestral dates on bacterial phylogenetic trees
The sequencing and comparative analysis of a collection of bacterial genomes from a single species or lineage of interest can lead to key insights into its evolution, ecology or epidemiology. The tool of choice for such a study is often to build a phylogenetic tree, and more specifically when possible a dated phylogeny, in which the dates of all common ancestors are estimated. Here, we propose a new Bayesian methodology to construct dated phylogenies which is specifically designed for bacterial genomics. Unlike previous Bayesian methods aimed at building dated phylogenies, we consider that the phylogenetic relationships between the genomes have been previously evaluated using a standard phylogenetic method, which makes our methodology much faster and scalable. This two-step approach also allows us to directly exploit existing phylogenetic methods that detect bacterial recombination, and therefore to account for the effect of recombination in the construction of a dated phylogeny. We analysed many simulated datasets in order to benchmark the performance of our approach in a wide range of situations. Furthermore, we present applications to three different real datasets from recent bacterial genomic studies. Our methodology is implemented in a R package called BactDating which is freely available for download at https://github.com/xavierdidelot/BactDating
Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict
Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated
Union renewal in historical perspective
This article revisits contemporary union renewal/revival debates through comparison with the late 1930s resurgence of trade unionism in the UK’s engineering industry. It is argued that the 1930s union renewal arose from more favourable contextual conditions than those currently obtaining. It was led by political activists, with better-articulated organisation and greater resonance in the working class than their contemporary counterparts, and who were assisted by state policy and pro-worker forces. Conclusions are drawn in relation to current debates
Axl-EGFR receptor tyrosine kinase hetero-interaction provides EGFR with access to pro-invasive signalling in cancer cells
© The Author(s) 2016. Acquired resistance to conventional and targeted therapies is becoming a major hindrance in cancer management. It is increasingly clear that cancer cells are able to evolve and rewire canonical signalling pathways to their advantage, thus evading cell death and promoting cell invasion. The Axl receptor tyrosine kinase (RTK) has been shown to modulate acquired resistance to EGFR-targeted therapies in both breast and lung cancers. Glioblastoma multiforme (GBM) is a highly infiltrative and invasive form of brain tumour with little response to therapy. Both Axl and EGFR have been identified as major players in gliomagenesis and invasiveness. However, the mechanisms underlying a potential signalling crosstalk between EGFR and Axl RTKs are unknown. The purpose of this study was to investigate this novel and unconventional interaction among RTKs of different families in human GBM cells. With the use of western blotting, in vitro kinase activity, co-immunoprecipitation and bimolecular fluorescence complementation assays, we show that EGF stimulates activation of Axl kinase and that there is a hetero-interaction between the two RTKs. Through small interfering RNA knockdown and quantitative PCR screening, we identified distinct gene expression patterns in GBM cells that were specifically regulated by signalling from EGFR-EGFR, Axl-Axl and EGFR-Axl RTK parings. These included genes that promote invasion, which were activated only via the EGFR-Axl axis (MMP9), while EGFR-EGFR distinctly regulated the cell cycle and Axl-Axl regulated invasion. Our findings provide critical insights into the role of EGFR-Axl hetero-dimerisation in cancer cells and reveal regulation of cell invasion via Axl as a novel function of EGFR signalling
Recommended from our members
Diversification of bacterial genome content through distinct mechanisms over different timescales
Bacterial populations often consist of multiple co-circulating lineages. Determining how such population structures arise requires understanding what drives bacterial diversification. Using 616 systematically sampled genomes, we show that Streptococcus pneumoniae lineages are typically characterized by combinations of infrequently transferred stable genomic islands: those moving primarily through transformation, along with integrative and conjugative elements and phage-related chromosomal islands. The only lineage containing extensive unique sequence corresponds to a set of atypical unencapsulated isolates that may represent a distinct species. However, prophage content is highly variable even within lineages, suggesting frequent horizontal transmission that would necessitate rapidly diversifying anti-phage mechanisms to prevent these viruses sweeping through populations. Correspondingly, two loci encoding Type I restriction-modification systems able to change their specificity over short timescales through intragenomic recombination are ubiquitous across the collection. Hence short-term pneumococcal variation is characterized by movement of phage and intragenomic rearrangements, with the slower transfer of stable loci distinguishing lineages
SerpinB2 regulates stromal remodelling and local invasion in pancreatic cancer
Pancreatic cancer has a devastating prognosis, with an overall 5-year survival rate of ~8%, restricted treatment options and characteristic molecular heterogeneity. SerpinB2 expression, particularly in the stromal compartment, is associated with reduced metastasis and prolonged survival in pancreatic ductal adenocarcinoma (PDAC) and our genomic analysis revealed that SERPINB2 is frequently deleted in PDAC. We show that SerpinB2 is required by stromal cells for normal collagen remodelling in vitro, regulating fibroblast interaction and engagement with collagen in the contracting matrix. In a pancreatic cancer allograft model, co-injection of PDAC cancer cells and SerpinB2(-/-) mouse embryonic fibroblasts (MEFs) resulted in increased tumour growth, aberrant remodelling of the extracellular matrix (ECM) and increased local invasion from the primary tumour. These tumours also displayed elevated proteolytic activity of the primary biochemical target of SerpinB2-urokinase plasminogen activator (uPA). In a large cohort of patients with resected PDAC, we show that increasing uPA mRNA expression was significantly associated with poorer survival following pancreatectomy. This study establishes a novel role for SerpinB2 in the stromal compartment in PDAC invasion through regulation of stromal remodelling and highlights the SerpinB2/uPA axis for further investigation as a potential therapeutic target in pancreatic cancer
"Legal at the time"?: Companies, governments and reparations for Mauritian slavery
This article critiques the “legal at the time” argument used by states and companies which historically practised slavery to defend themselves against claims for restitution, examining the Mauritian case. Although slavery was largely legal there before its abolition by the British, torts were common under slavery and, during the years of historic rupture, 1794–1839, when the local élite defied first French and then English law, generated systemic unlawful activity. Most types of legal action for restitution for slavery face formidable difficulties; pursuing reparations supported by broad legal arguments may therefore be a more viable route. Slavery may be argued to have been an illegitimate endeavour in itself. While sympathetic to that view, this article does not pursue it but rather seeks to demonstrate that the “legal at the time” argument against reparations contains significant lacunae even within its restricted terms. It also shows that French constitutional law offers possibilities in the form of rights that are not time-bound
Workers' self-management, recovered companies and the sociology of work
We analyse how far Argentina’s worker-recovered companies (WRCs) have sustained themselves and their principles of equity and workers’ self-management since becoming widespread following the country’s 2001–2 economic crisis. Specialist Spanish-language sources, survey data and documents are analysed through four key sociological themes. We find that the number of WRCs has increased in Argentina, and that they represent a viable production model. Further, they have generally maintained their central principles and even flourished. This occurred despite the global economic crisis, legal and financial pressures to adopt capitalist practices and management structures, the risk of market absorption and state attempts to coopt, demobilise and epoliticise the movement. We argue that today they function as a much-needed international beacon of an alternative vision for
labour and that integration of their experience has potential to revitalise the field
Where will we live when we get older?
Ageing populations, although exhibiting marked differences across countries and cultures, are a global phenomenon. Old-age dependency ratios in most developed countries are projected to double by the year 2050. In Australia there will be a strain on economic growth as a large part of the population moves from pre-retirement to post-retirement age over the next 25 years. A disproportionate amount of this strain will be concentrated in aged-care housing or retirement accommodation. Current evidence suggests that existing housing stock for older people is inadequate. As the Australian population ages, the maintenance and long-term performance of retirement housing is a key concern of government and housing providers. This study looked at four aged-care or retirement providers across Australia and examined the performance of the current housing stock managed by these providers. The interviews revealed that housing design decisions in retirement stock, although critically important to the changing needs of occupants and the adequate supply of suitable housing, are often ill-considered. The findings critically question the idea of simply building ‘more of the same’ to relieve demand. This study has major implications for the future of Australian retirement housing, especially as the population ages dramatically.<br /
- …
