89 research outputs found

    ZnSe Nanorods as Visible-Light Absorbers for Photocatalytic and Photoelectrochemical H2 Evolution in Water

    Get PDF
    A precious-metal- and Cd-free photocatalyst system for efficient H2 evolution from aqueous protons with a performance comparable to Cd-based quantum dots is presented. Rod-shaped ZnSe nanocrystals (nanorods, NRs) with a Ni(BF4 )2 co-catalyst suspended in aqueous ascorbic acid evolve H2 with an activity up to 54±2 mmol H 2  gZnSe -1  h-1 and a quantum yield of 50±4 % (λ=400 nm) under visible light illumination (AM 1.5G, 100 mW cm-2 , λ>400 nm). Under simulated full-spectrum solar irradiation (AM 1.5G, 100 mW cm-2 ), up to 149±22 mmol H 2  gZnSe -1  h-1 is generated. Significant photocorrosion was not noticeable within 40 h and activity was even observed without an added co-catalyst. The ZnSe NRs can also be used to construct an inexpensive delafossite CuCrO2 photocathode, which does not rely on a sacrificial electron donor. Immobilized ZnSe NRs on CuCrO2 generate photocurrents of around -10 μA cm-2 in an aqueous electrolyte solution (pH 5.5) with a photocurrent onset potential of approximately +0.75 V vs. RHE. This work establishes ZnSe as a state-of-the-art light absorber for photocatalytic and photoelectrochemical H2 generation.Christian Doppler Research Association (Austrian Federal Ministry of Science, Research and Economy and the National Foundation for Research, Technology and Development), the OMV Group, the EPSRC NanoDTC, EPSRC Underpinning Multi-User Equipment Grant (EP/P030467/1), the Erasmus+ program (D.W.), the Erasmus program (A.S.) and the World Premier International Research Center Initiative, MEXT, Japa

    Identifying the drivers and constraints to adoption of IPM amongst arable farmers in UK and Ireland.

    Get PDF
    Publication history: Accepted - 2 May 2021; Published online - 15 May 2021.BACKGROUND Arable crops in temperate climatic regions such as the UK and Ireland are subject to a multitude of pests (weeds, diseases and vertebrate/invertebrate pests) that can negatively impact productivity if not properly managed. Integrated pest management (IPM) is widely promoted as a sustainable approach to pest management, yet there are few recent studies assessing adoption levels and factors influencing this in arable cropping systems in the UK and Ireland. This study used an extensive farmer survey to address both these issues. RESULTS Adoption levels of various IPM practices varied across the sample depending on a range of factors relating to both farm and farmer characteristics. Positive relationships were observed between IPM adoption and farmed area, and familiarity with IPM. Choice of pest control information sources was also found to be influential on farmer familiarity with IPM, with those who were proactive in seeking information from impartial sources being more engaged and reporting higher levels of adoption. CONCLUSION Policies that encourage farmers to greater levels of engagement with their pest management issues and more proactive information seeking, such as through advisory professionals, more experienced peers through crop walks, open days and discussion groups should be strongly encouraged.We acknowledge the financial and logistical support of the: Scottish Government Strategic Research Programme; Rural Business Research (England); Department of Agriculture, Food and the Marine (Ireland) (RSF 14/S/879); and the Department of Agriculture, Environment and Rural Affairs (Northern Ireland) in enabling the study reported here

    Photosynthesis-dependent H₂O₂ transfer from chloroplasts to nuclei provides a high-light signalling mechanism

    Get PDF
    Chloroplasts communicate information by signalling to nuclei during acclimation to fluctuating light. Several potential operating signals originating from chloroplasts have been proposed, but none have been shown to move to nuclei to modulate gene expression. One proposed signal is hydrogen peroxide (H2O2) produced by chloroplasts in a light-dependent manner. Using HyPer2, a genetically encoded fluorescent H2O2 sensor, we show that in photosynthetic Nicotiana benthamiana epidermal cells, exposure to high light increases H2O2 production in chloroplast stroma, cytosol and nuclei. Critically, over-expression of stromal ascorbate peroxidase (H2O2 scavenger) or treatment with DCMU (photosynthesis inhibitor) attenuates nuclear H2O2 accumulation and high light-responsive gene expression. Cytosolic ascorbate peroxidase over-expression has little effect on nuclear H2O2 accumulation and high light-responsive gene expression. This is because the H2O2 derives from a sub-population of chloroplasts closely associated with nuclei. Therefore, direct H2O2 transfer from chloroplasts to nuclei, avoiding the cytosol, enables photosynthetic control over gene expression

    Molecular Inhibition for Selective CO2 Conversion.

    No full text
    Electrochemical CO2 reduction presents a sustainable route to the production of chemicals and fuels. Achieving a narrow product distribution with heterogeneous Cu catalysts is challenging and conventional material modifications offer limited control over selectivity. Here, we show that surface-immobilised molecular species can act as inhibitors for specific carbon products to provide rational control over product distributions. Combined experimental and computational results showed that anchoring of a thiol-functionalised pyridine on Cu destabilises a surface-bound reaction intermediate to energetically block a CO-producing pathway, thereby favouring formate production. The nitrogen atom was shown to be essential to the inhibition mechanism. The ability of molecules to control selectivity through inhibition of specific reaction pathways offers a unique approach to rationally modify heterogeneous catalysts
    corecore