186 research outputs found
Manipulation of ultracold atomic mixtures using microwave techniques
We used microwave radiation to evaporatively cool a mixture of of 133Cs and
87Rb atoms in a magnetic trap. A mixture composed of an equal number (around
10^4) of Rb and Cs atoms in their doubly polarized states at ultracold
temperatures was prepared. We also used microwaves to selectively evaporate
atoms in different Zeeman states.Comment: 9 pages, 6 figure
Sympathetic cooling and collisional properties of a Rb-Cs mixture
We report on measurements of the collisional properties of a mixture of
Cs and Rb atoms in a magnetic trap at
temperatures. By selectively evaporating the Rb atoms using a radio-frequency
field, we achieved sympathetic cooling of Cs down to a few . The
inter-species collisional cross-section was determined through rethermalization
measurements, leading to an estimate of for the s-wave scattering
length for Rb in the and Cs in the magnetic
states. We briefly speculate on the prospects for reaching Bose-Einstein
condensation of Cs inside a magnetic trap through sympathetic cooling
Asymmetric Landau-Zener tunneling in a periodic potential
Using a simple model for nonlinear Landau-Zener tunneling between two energy
bands of a Bose-Einstein condensate in a periodic potential, we find that the
tunneling rates for the two directions of tunneling are not the same. Tunneling
from the ground state to the excited state is enhanced by the nonlinearity,
whereas in the opposite direction it is suppressed. These findings are
confirmed by numerical simulations of the condensate dynamics. Measuring the
tunneling rates for a condensate of rubidium atoms in an optical lattice, we
have found experimental evidence for this asymmetry.Comment: 5 pages, 3 figure
Ion detection in the photoionization of a Rb Bose-Einstein condensate
Two-photon ionization of Rubidium atoms in a magneto-optical trap and a
Bose-Einstein condensate (BEC) is experimentally investigated. Using 100 ns
laser pulses, we detect single ions photoionized from the condenstate with a
35(10)% efficiency. The measurements are performed using a quartz cell with
external electrodes, allowing large optical access for BECs and optical
lattices.Comment: 14 pages, 7 figure
Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates
Lytic polysaccharide monooxygenases (LPMOs) are industrially important copper-dependent enzymes that oxidatively cleave polysaccharides. Here we present a functional and structural characterization of two closely related AA9-family LPMOs from Lentinus similis (LsAA9A) and Collariella virescens (CvAA9A). LsAA9A and CvAA9A cleave a range of polysaccharides, including cellulose, xyloglucan, mixed-linkage glucan and glucomannan. LsAA9A additionally cleaves isolated xylan substrates. The structures of CvAA9A and of LsAA9A bound to cellulosic and non-cellulosic oligosaccharides provide insight into the molecular determinants of their specificity. Spectroscopic measurements reveal differences in copper co-ordination upon the binding of xylan and glucans. LsAA9A activity is less sensitive to the reducing agent potential when cleaving xylan, suggesting that distinct catalytic mechanisms exist for xylan and glucan cleavage. Overall, these data show that AA9 LPMOs can display different apparent substrate specificities dependent upon both productive protein–carbohydrate interactions across a binding surface and also electronic considerations at the copper active site
Oxidation kinetics of Ni metallic films: formation of NiO-based resistive switching structures
International audienceResistive switching controlled by external voltage has been reported in many Metal/Resistive oxide/Metal (MRM) structures in which the resistive oxide was simple transition metal oxide thin films such as NiO or TiO2 deposited by reactive sputtering. In this paper, we have explored the possibility to form NiO-based MRM structures from the partial oxidation of a blanket Ni metallic film using a Rapid Thermal Annealing route, the remaining Ni layer being used as bottom electrode. X-ray diffraction was used to apprehend the Ni oxidation kinetics while transmission electron microscopy enabled investigating local microstructure and film interfaces. These analyses have especially emphasized the predominant role of the asdeposited Ni metallic film microstructure (size and orientation of crystallites) on (i) oxidation kinetics, (ii) NiO film microstructural characteristics (crystallite size, texture and interface roughness) and (iii) subsequent electrical behavior. On this latter point, the as-grown NiO films were initially in the low resistance ON state without the electro-forming step usually required for sputtered films. Above the threshold voltage varying from 2 to 5 V depending on oxidation conditions, the Pt/NiO/Ni MRM structures irreversibly switched into the high resistance OFF state. This irreversibility is thought to originate in the microstructure of the NiO films that would cause the difficulty to re-form conductive paths
Metastability exchange optical pumping of 3He gas up to hundreds of millibars at 4.7 Tesla
- …
