356 research outputs found
Mediated tunable coupling of flux qubits
It is sketched how a monostable rf- or dc-SQUID can mediate an inductive
coupling between two adjacent flux qubits. The nontrivial dependence of the
SQUID's susceptibility on external flux makes it possible to continuously tune
the induced coupling from antiferromagnetic (AF) to ferromagnetic (FM). In
particular, for suitable parameters, the induced FM coupling can be
sufficiently large to overcome any possible direct AF inductive coupling
between the qubits.
The main features follow from a classical analysis of the multi-qubit
potential. A fully quantum treatment yields similar results, but with a
modified expression for the SQUID susceptibility.
Since the latter is exact, it can also be used to evaluate the
susceptibility--or, equivalently, energy-level curvature--of an isolated
rf-SQUID for larger shielding and at degenerate flux bias, i.e., a (bistable)
qubit. The result is compared to the standard two-level (pseudospin) treatment
of the anticrossing, and the ensuing conclusions are verified numerically.Comment: REVTeX 4, 16 pp., 4 EPS figures. N.B.: "Alec" is my first, and
"Maassen van den Brink" my family name. v2: major expansion and rewriting,
new title and co-author; to appear in New Journal of Physics special issue
(R. Fazio, ed.
Deep-well ultrafast manipulation of a SQUID flux qubit
Superconducting devices based on the Josephson effect are effectively used
for the implementation of qubits and quantum gates. The manipulation of
superconducting qubits is generally performed by using microwave pulses with
frequencies from 5 to 15 GHz, obtaining a typical operating clock from 100MHz
to 1GHz. A manipulation based on simple pulses in the absence of microwaves is
also possible. In our system a magnetic flux pulse modifies the potential of a
double SQUID qubit from a symmetric double well to a single deep well
condition. By using this scheme with a Nb/AlOx/Nb system we obtained coherent
oscillations with sub-nanosecond period (tunable from 50ps to 200ps), very fast
with respect to other manipulating procedures, and with a coherence time up to
10ns, of the order of what obtained with similar devices and technologies but
using microwave manipulation. We introduce the ultrafast manipulation
presenting experimental results, new issues related to this approach (such as
the use of a feedback procedure for cancelling the effect of "slow"
fluctuations), and open perspectives, such as the possible use of RSFQ logic
for the qubit control.Comment: 9 pages, 7 figure
Energy resolution and efficiency of phonon-mediated Kinetic Inductance Detectors for light detection
The development of sensitive cryogenic light detectors is of primary interest
for bolometric experiments searching for rare events like dark matter
interactions or neutrino-less double beta decay. Thanks to their good energy
resolution and the natural multiplexed read-out, Kinetic Inductance Detectors
(KIDs) are particularly suitable for this purpose. To efficiently couple
KIDs-based light detectors to the large crystals used by the most advanced
bolometric detectors, active surfaces of several cm are needed. For this
reason, we are developing phonon-mediated detectors. In this paper we present
the results obtained with a prototype consisting of four 40 nm thick aluminum
resonators patterned on a 22 cm silicon chip, and calibrated with
optical pulses and X-rays. The detector features a noise resolution
eV and an (182) efficiency.Comment: 5 pages, 5 figure
Quantum Statistics and Entanglement of Two Electromagnetic Field Modes Coupled via a Mesoscopic SQUID Ring
In this paper we investigate the behaviour of a fully quantum mechanical
system consisting of a mesoscopic SQUID ring coupled to one or two
electromagnetic field modes. We show that we can use a static magnetic flux
threading the SQUID ring to control the transfer of energy, the entanglement
and the statistical properties of the fields coupled to the ring. We also
demonstrate that at, and around, certain values of static flux the effective
coupling between the components of the system is large. The position of these
regions in static flux is dependent on the energy level structure of the ring
and the relative field mode frequencies, In these regions we find that the
entanglement of states in the coupled system, and the energy transfer between
its components, is strong.Comment: 15 pages, 19 figures, Uploaded as implementing a policy of arXiving
old paper
Study of the coincidences between the gravitational wave detectors EXPLORER and NAUTILUS in 2001
We report the result from a search for bursts of gravitational waves using
data collected by the cryogenic resonant detectors EXPLORER and NAUTILUS during
the year 2001, for a total measuring time of 90 days. With these data we
repeated the coincidence search performed on the 1998 data (which showed a
small coincidence excess) applying data analysis algorithms based on known
physical characteristics of the detectors. With the 2001 data a new interesting
coincidence excess is found when the detectors are favorably oriented with
respect to the Galactic Disk
Initial operation of the International Gravitational Event Collaboration
The International Gravitational Event Collaboration, IGEC, is a coordinated
effort by research groups operating gravitational wave detectors working
towards the detection of millisecond bursts of gravitational waves. Here we
report on the current IGEC resonant bar observatory, its data analysis
procedures, the main properties of the first exchanged data set. Even though
the available data set is not complete, in the years 1997 and 1998 up to four
detectors were operating simultaneously. Preliminary results are mentioned.Comment: 8 pages, 2 figures, 3 tables; Proceeding of the GWDAW'99. Submitted
to the International Journal of Modern Physic
Search for 14.4 keV solar axions from M1 transition of Fe-57 with CUORE crystals
We report the results of a search for axions from the 14.4 keV M1 transition
from Fe-57 in the core of the sun using the axio-electric effect in TeO2
bolometers. The detectors are 5x5x5 cm3 crystals operated at about 10 mK in a
facility used to test bolometers for the CUORE experiment at the Laboratori
Nazionali del Gran Sasso in Italy. An analysis of 43.65 kg d of data was made
using a newly developed low energy trigger which was optimized to reduce the
detectors energy threshold. An upper limit of 0.63 c kg-1 d-1 was established
at 95% C.L.. From this value, a lower bound at 95% C.L. was placed on the
Peccei-Quinn energy scale of fa >= 0.76 10**6 GeV for a value of S=0.55 for the
flavor-singlet axial vector matrix element. Bounds are given for the interval
0.15 < S < 0.55.Comment: 14 pages, 6 figures, submitted to JCA
Increasing the bandwidth of resonant gravitational antennas: The case of Explorer
Resonant gravitational wave detectors with an observation bandwidth of tens
of hertz are a reality: the antenna Explorer, operated at CERN by the ROG
collaboration, has been upgraded with a new read-out. In this new
configuration, it exhibits an unprecedented useful bandwidth: in over 55 Hz
about its frequency of operation of 919 Hz the spectral sensitivity is better
than 10^{-20} /sqrt(Hz) . We describe the detector and its sensitivity and
discuss the foreseable upgrades to even larger bandwidths.Comment: 4 pages- 4 figures Acceted for publication on Physical Review Letter
Exploring the Neutrinoless Double Beta Decay in the Inverted Neutrino Hierarchy with Bolometric Detectors
Neutrinoless double beta decay (0nubb) is one of the most sensitive probes
for physics beyond the Standard Model, providing unique information on the
nature of neutrinos. In this paper we review the status and outlook for
bolometric 0nubb decay searches. We summarize recent advances in background
suppression demonstrated using bolometers with simultaneous readout of heat and
light signals. We simulate several configurations of a future CUORE-like
bolometer array which would utilize these improvements and present the
sensitivity reach of a hypothetical next-generation bolometric 0nubb
experiment. We demonstrate that a bolometric experiment with the isotope mass
of about 1 ton is capable of reaching the sensitivity to the effective Majorana
neutrino mass (|mee|) of order 10-20 meV, thus completely exploring the
so-called inverted neutrino mass hierarchy region. We highlight the main
challenges and identify priorities for an R&D program addressing them.Comment: 22 pages, 15 figures, submitted to EPJ
- …
