1,123 research outputs found

    On the quasi-component of pseudocompact abelian groups

    Get PDF
    In this paper, we describe the relationship between the quasi-component q(G) of a (perfectly) minimal pseudocompact abelian group G and the quasi-component q(\widetilde G) of its completion. Specifically, we characterize the pairs (C,A) of compact connected abelian groups C and subgroups A such that A \cong q(G) and C \cong q(\widetilde G). As a consequence, we show that for every positive integer n or n=\omega, there exist plenty of abelian pseudocompact perfectly minimal n-dimensional groups G such that the quasi-component of G is not dense in the quasi-component of the completion of G.Comment: minor revisio

    Precompact noncompact reflexive abelian groups

    Full text link
    We present a series of examples of precompact, noncompact, reflexive topological Abelian groups. Some of them are pseudocompact or even countably compact, but we show that there exist precompact non-pseudocompact reflexive groups as well. It is also proved that every pseudocompact Abelian group is a quotient of a reflexive pseudocompact group with respect to a closed reflexive pseudocompact subgroup

    Plasmaspheric H+, He+, O+, He++, and O++ Densities and Temperatures

    Get PDF
    Thermal plasmaspheric densities and temperatures for five ion species have recently become available, even though these quantities were derived some time ago from the Retarding Ion Mass Spectrometer onboard the Dynamics Explorer 1 satellite over the years 1981-1984. The quantitative properties will be presented. Densities are found to have one behavior with lessor statistical variation below about L=2 and another with much greater variability above that Lshell. Temperatures also have a behavior difference between low and higher L-values. The density ratio He++/H+ is the best behaved with values of about 0.2% that slightly increase with increasing L. Unlike the He+/H+ density ratio that on average decreases with increasing Lvalue, the O+/H+ and O++/H+ density ratios have decreasing values below about L=2 and increasing average ratios at higher L-values. Hydrogen ion temperatures range from about 0.2 eV to several 10s of eV for a few measurements, although the bulk of the observations are of temperatures below 3 eV, again increasing with L-value. The temperature ratios of He+/H+ are tightly ordered around 1.0 except for the middle plasmasphere between L=3.5 and 4.5 where He+ temperatures can be significantly higher. The temperatures of He++, O+, and O++ are consistently higher than H+

    A New Global Core Plasma Model of the Plasmasphere

    Get PDF
    The Global Core Plasma Model (GCPM) is the first empirical model for thermal inner magnetospheric plasma designed to integrate previous models and observations into a continuous in value and gradient representation of typical total densities. New information about the plasmasphere, in particular, make possible significant improvement. The IMAGE Mission Radio Plasma Imager (RPI) has obtained the first observations of total plasma densities along magnetic field lines in the plasmasphere and polar cap. Dynamics Explorer 1 Retarding Ion Mass Spectrometer (RIMS) has provided densities in temperatures in the plasmasphere for 5 ion species. These and other works enable a new more detailed empirical model of thermal in the inner magnetosphere that will be presented. Specifically shown here are the inner-plasmasphere RIMS measurements, radial fits to densities and temperatures for H(+), He(+), He(++), O(+), and O(+) and the error associated with these initial simple fits. Also shown are more subtle dependencies on the f10.7 P-value (see Richards et al. [1994])

    Relative Concentration of He+ in the Inner Magnetosphere as Observed by the DE 1 Retarding Ion Mass Spectrometer

    Get PDF
    With Observations from the retarding ion mass spectrometer on the Dynamics Explorer I from 1981 through 1984, we examine the He(+) to H(+) density ratios as a function of altitude, latitude, season, local time, geomagnetic and solar activity. We find that the ratios are primarily a function of geocentric distance and the solar EUV input. The ratio of the densities, when plotted as a function of geocentric distance, decrease by an order of magnitude from 1 to 4.5 R(sub E). After the He(+) to H(+) density ratios are adjusted for the dependence on radial distance, they decrease nonlinearly by a factor of 5 as the solar EUV proxy varies from about 250 to about 70. When the mean variations with both these parameters are removed, the ratios appear to have no dependence on geomagnetic activity and weak dependence on local time or season, geomagnetic latitude, and L shell

    Do the peak and mean force methods of assessing vertical jump force asymmetry agree?

    Get PDF
    The aim of this study was to assess agreement between peak and mean force methods of quantifying force asymmetry during the countermovement jump (CMJ). Forty-five men performed four CMJ with each foot on one of two force plates recording at 1000 Hz. Peak and mean were obtained from both sides during the braking and propulsion phases. The dominant side was obtained for the braking and propulsion phase as the side with the largest peak or mean force and agreement was assessed using percentage agreement and the kappa coefficient. Braking phase peak and mean force methods demonstrated a percentage agreement of 84% and a kappa value of 0.67 (95% confidence limits: 0.45 to 0.90), indicating substantial agreement. Propulsion phase peak and mean force methods demonstrated a percentage agreement of 87% and a kappa value of 0.72 (95% confidence limits: 0.51 to 0.93), indicating substantial agreement. While agreement was substantial, side-to-side differences were not reflected equally when peak and mean force methods of assessing CMJ asymmetry were used. These methods should not be used interchangeably, but rather a combined approach should be used where practitioners consider both peak and mean force to obtain the fullest picture of athlete asymmetry

    Plasmaspheric H+, He+, He++, O+, and O++ Densities and Temperatures

    Get PDF
    Thermal plasmaspheric densities and temperatures for five ion species have recently become available, even though these quantities were derived some time ago from the Retarding Ion Mass Spectrometer onboard the Dynamics Explorer 1 satellite over the years 1981-1984. The quantitative properties will be presented. Densities are found to have one behavior with lessor statistical variation below about L=2 and another with much greater variability above that Lshell. Temperatures also have a behavior difference between low and higher L-values. The density ratio He++/H+ is the best behaved with values of about 0.2% that slightly increase with increasing L. Unlike the He+/H+ density ratio that on average decreases with increasing Lvalue, the O+/H+ and O++/H+ density ratios have decreasing values below about L=2 and increasing average ratios at higher L-values. Hydrogen ion temperatures range from about 0.2 eV to several 10s of eV for a few measurements, although the bulk of the observations are of temperatures below 3 eV, again increasing with L-value. The temperature ratios of He+/H+ are tightly ordered around 1.0 except for the middle plasmasphere between L=3.5 and 4.5 where He+ temperatures can be significantly higher. The temperatures of He++, O+, and O++ are consistently higher than H+

    Muscle architectural and force-velocity curve adaptations following 10 weeks of training with weightlifting catching and pulling derivatives

    Get PDF
    The aims of this study were to examine the muscle architectural, rapid force production, and force-velocity curve adaptations following 10 weeks of resistance training with either submaximal weightlifting catching (CATCH) or pulling (PULL) derivatives or pulling derivatives with phase-specific loading (OL). 27 re-sistance-trained men were randomly assigned to the CATCH, PULL, or OL groups and completed pre-and post-intervention ultrasound, countermovement jump (CMJ), and isometric mid-thigh pull (IMTP). Vastus lateralis and biceps femoris muscle thickness, pennation angle, and fascicle length, CMJ force at peak power, velocity at peak power, and peak power, and IMTP peak force and force at 100-, 150-, 200-, and 250 ms were assessed. There were no significant or meaningful differences in muscle architecture measures for any group (p \u3e 0.05). The PULL group displayed small-moderate (g = 0.25 - 0.81) improvements in all CMJ variables while the CATCH group displayed trivial effects (g = 0.00 - 0.21). In addition, the OL group displayed trivial and small effects for CMJ force (g = -0.12 - 0.04) and velocity variables (g = 0.32 - 0.46), respectively. The OL group displayed moderate (g = 0.48 - 0.73) improvements in all IMTP variables while to PULL group displayed small-moderate (g = 0.47 - 0.55) im-provements. The CATCH group displayed trivial-small (g = -0.39 - 0.15) decreases in IMTP performance. The PULL and OL groups displayed visible shifts in their force-velocity curves; however, these changes were not significant (p \u3e 0.05). Perform-ing weightlifting pulling derivatives with either submaximal or phase-specific loading may enhance rapid and peak force production characteristics. Strength and conditioning practitioners should load pulling derivatives based on the goals of each specific phase, but also allow their athletes ample exposure to achieve each goal
    corecore