1,155 research outputs found
High frequency homogenisation for elastic lattices
A complete methodology, based on a two-scale asymptotic approach, that
enables the homogenisation of elastic lattices at non-zero frequencies is
developed. Elastic lattices are distinguished from scalar lattices in that two
or more types of coupled waves exist, even at low frequencies. Such a theory
enables the determination of effective material properties at both low and high
frequencies. The theoretical framework is developed for the propagation of
waves through lattices of arbitrary geometry and dimension. The asymptotic
approach provides a method through which the dispersive properties of lattices
at frequencies near standing waves can be described; the theory accurately
describes both the dispersion curves and the response of the lattice near the
edges of the Brillouin zone. The leading order solution is expressed as a
product between the standing wave solution and long-scale envelope functions
that are eigensolutions of the homogenised partial differential equation. The
general theory is supplemented by a pair of illustrative examples for two
archetypal classes of two-dimensional elastic lattices. The efficiency of the
asymptotic approach in accurately describing several interesting phenomena is
demonstrated, including dynamic anisotropy and Dirac cones.Comment: 24 pages, 7 figure
Fluid-loaded metasurfaces
We consider wave propagation along fluid-loaded structures which take the
form of an elastic plate augmented by an array of resonators forming a
metasurface, that is, a surface structured with sub-wavelength resonators. Such
surfaces have had considerable recent success for the control of wave
propagation in electromagnetism and acoustics, by combining the vision of
sub-wavelength wave manipulation, with the design, fabrication and size
advantages associated with surface excitation. We explore one aspect of recent
interest in this field: graded metasurfaces, but within the context of
fluid-loaded structures.
Graded metasurfaces allow for selective spatial frequency separation and are
often referred to as exhibiting rainbow trapping. Experiments, and theory, have
been developed for acoustic, electromagnetic, and even elastic, rainbow devices
but this has not been approached for fluid-loaded structures that support
surface waves coupled with the acoustic field in a bulk fluid. This surface
wave, coupled with the fluid, can be used to create an additional effect by
designing a metasurface to mode convert from surface to bulk waves. We
demonstrate that sub-wavelength control is possible and that one can create
both rainbow trapping and mode conversion phenomena for a fluid-loaded elastic
plate model.Comment: 13 pages, 10 figure
Localisation for a line defect in an infinite square lattice
Localised defect modes generated by a finite line defect composed of several
masses, embedded an infinite square cell lattice, are analysed using the linear
superposition of Green's function for a single mass defect. Several
representations of the lattice Green's function are presented and discussed.
The problem is reduced to an eigenvalue system and the properties of the
corresponding matrix are examined in detail to yield information regarding the
number of symmetric and skew-symmetric modes. Asymptotic expansions in the far
field, associated with long wavelength homogenisation are presented. Asymptotic
expressions for Green's function in the vicinity of the band edge are also
discussed. Several examples are presented where eigenfrequencies linked to this
system and the corresponding eigenmodes are computed for various defects and
compared with the asymptotic expansions. The case of an infinite defect is also
considered and an explicit dispersion relation is obtained. For the case when
the number of masses within the line defect is large, it is shown that the
range of the eigenfrequencies can be predicted using the dispersion diagram for
the infinite chain
Tilted resonators in a triangular elastic lattice: chirality, Bloch waves and negative refraction
We consider a vibrating triangular mass-truss lattice whose unit cell contains a resonator of a triangular shape. The resonators are connected to the triangular lattice by trusses. Each resonator is tilted, i.e. it is rotated with respect to the triangular lattice's unit cell through an angle . This geometrical parameter is responsible for the emergence of a resonant mode in the Bloch spectrum for elastic waves and strongly affects the dispersive properties of the lattice. Additionally, the tilting angle triggers the opening of a band gap at a Dirac-like point. We provide a physical interpretation of these phenomena and discuss the dynamical implications on elastic Bloch waves. The dispersion properties are used to design a structured interface containing tilted resonators which exhibit negative refraction and focussing, as in a "flat elastic lens"
Cymatics for the cloaking of flexural vibrations in a structured plate
Based on rigorous theoretical findings, we present a proof-of-concept design for a structured square cloak enclosing a void in an elastic lattice. We implement high-precision fabrication and experimental testing of an elastic invisibility cloak for flexural waves in a mechanical lattice. This is accompanied by verifications and numerical modelling performed through finite element simulations. The primary advantage of our square lattice cloak, over other designs, is the straightforward implementation and the ease of construction. The elastic lattice cloak, implemented experimentally, shows high efficiency
Willing and able: action-state orientation and the relation between procedural justice and employee cooperation
Existing justice theory explains why fair procedures motivate employees to adopt cooperative goals, but it fails to explain how employees strive towards these goals. We study self-regulatory abilities that underlie goal striving; abilities that should thus affect employees’ display of cooperative behavior in response to procedural justice. Building on action control theory, we argue that employees who display effective self-regulatory strategies (action oriented employees) display relatively strong cooperative behavioral responses to fair procedures. A multisource field study and a laboratory experiment support this prediction. A subsequent experiment addresses the process underlying this effect by explicitly showing that action orientation facilitates attainment of the cooperative goals that people adopt in response to fair procedures, thus facilitating the display of actual cooperative behavior. This goal striving approach better integrates research on the relationship between procedural justice and employee cooperation in the self-regulation and the work motivation literature. It also offers organizations a new perspective on making procedural justice effective in stimulating employee cooperation by suggesting factors that help employees reach their adopted goals
Using self-definition to predict the influence of procedural justice on organizational, interpersonal, and job/task-oriented citizenship behaviors
An integrative self-definition model is proposed to improve our understanding of how procedural justice affects different outcome modalities in organizational behavior. Specifically, it is examined whether the strength of different levels of self-definition (collective, relational, and individual) each uniquely interact with procedural justice to predict organizational, interpersonal, and job/task-oriented citizenship behaviors, respectively. Results from experimental and (both single and multisource) field data consistently revealed stronger procedural justice effects (1) on organizational-oriented citizenship behavior among those who define themselves strongly in terms of organizational characteristics, (2) on interpersonal-oriented citizenship behavior among those who define themselves strongly in terms of their interpersonal relationships, and (3) on job/task-oriented citizenship behavior among those who define themselves weakly in terms of their distinctiveness or uniqueness. We discuss the relevance of these results with respect to how employees can be motivated most effectively in organizational settings
What’s past (and present) is prologue : interactions between justice levels and trajectories predicting behavioral reciprocity
Much of organizational justice research has tended to take a static approach, linking employees’ contemporaneous justice levels to outcomes of interest. In the present study, we tested a dynamic model emphasizing the interactive influences of both justice levels and trajectories for predicting behavioral social exchange outcomes. Specifically, our model posited both main effects and interactions between present justice levels and past justice changes over time in predicting helping behavior and voluntary turnover behavior. Data over four yearly measurement periods from 4,348 employees of a banking organization generally supported the notion that justice trajectories interact with absolute levels to predict both outcomes. Together, the findings highlight how employees invoke present fairness evaluations within the context of past fairness trends—rather than either in isolation—to inform decisions about behaviorally reciprocating at work
The Precursors and Products of Justice Climates: Group Leader Antecedents and Employee Attitudinal Consequences
Drawing on the organizational justice, organizational climate, leadership and personality, and social comparison theory literatures, we develop hypotheses about the effects of leader personality on the development of three types of justice climates (e.g., procedural, interpersonal, and informational), and the moderating effects of these climates on individual level justice- attitude relationships. Largely consistent with the theoretically-derived hypotheses, the results showed that leader (a) agreeableness was positively related to procedural, interpersonal and informational justice climates, (b) conscientiousness was positively related to a procedural justice climate, and (c) neuroticism was negatively related to all three types of justice climates. Further, consistent with social comparison theory, multilevel data analyses revealed that the relationship between individual justice perceptions and job attitudes (e.g., job satisfaction, commitment) was moderated by justice climate such that the relationships were stronger when justice climate was high
- …
