538 research outputs found

    Crystalline ground state in chiral Gross-Neveu and Cooper pair models at finite densities

    Get PDF
    We study the possibility of spatially non-uniform ground state in (1+1)-dimensional models with quartic fermi interactions at finite fermion densities by introducing chemical potential \mu. We examine the chiral Gross-Neveu model and the Cooper pair model as toy models of the chiral symmetry breaking and the difermion pair condensates which are presumed to exist in QCD. We confirm in the chiral Gross-Neveu model that the ground state has a crystalline structure in which the chiral condensate oscillates in space with wave number 2\mu. Whereas in the Cooper pair model we find that the vacuum structure is spatially uniform. Some discussions are given to explain this difference.Comment: 18 pages, REVTeX, 3 eps figure

    Instantons And Baryon Mass Splittings in the MIT Bag Model

    Get PDF
    The contribution of instanton-induced effective inter-quark interactions to the baryon mass splittings was considered in the bag model. It is found that results are different from those obtained in the constituent quark model where the instanton effects are like those from one-gluon exchange. This is because in the context of the bag model calculation the one-body instanton-induced interaction has to be included.Comment: 23 pages, report ZTF-93/10 (to appear in Phys.Rev. D

    A Two-Dimensional Model with Chiral Condensates and Cooper Pairs Having QCD-like Phase Structure

    Get PDF
    We describe how a generalization of the original Gross-Neveu model from U(N) to O(N) flavor symmetry leads to the appearance of a pairing condensate at high density, in agreement with the conjectured phenomenon of color superconductivity in (3+1)(3+1)-dimensional QCD. Moreover, the model displays a rich phase structure which closely resembles the one expected in two-flavor QCD.Comment: 11 pages, 1 fugure, Presented at TMU-Yale Symposium on Dynamics of Gauge Fields: An External Activity of APCTP, Tokyo, Japan, 13-15 Dec 199

    A Possible Origin of Dark Energy

    Full text link
    We discuss the possibility that the existence of dark energy may be due to the presence of a spin zero field ϕ(x)\phi(x), either elementary or composite. In the presence of other matter field, the transformation ϕ(x)ϕ(x)+\phi(x)\to \phi(x) + constant can generate a negative pressure, like the cosmological constant. In this picture, our universe can be thought as a very large bag, similar to the much smaller MIT bag model for a single nucleon.Comment: 4 pages, no figure, typos correcte

    Bag Model for a Link in a Closed Gluonic Chain

    Full text link
    The large NcN_c limit of Yang-Mills gauge theory is the dynamics of a closed gluonic chain, but this fact does not obviate the inherently strong coupling nature of the dynamical problem. However, we suggest that a single link in such a chain might be reasonably described in the quasi-perturbative language of gluons and their interactions. To implement this idea, we use the MIT bag to model the physics of a nearest neighbor bond.Comment: 10 pages, LaTe

    Symmetry of boundary conditions of the Dirac equation for electrons in carbon nanotubes.

    Get PDF
    We consider the effective mass model of spinless electrons in single wall carbon nanotubes that is equivalent to the Dirac equation for massless fermions. Within this framework we derive all possible energy independent hard wall boundary conditions that are applicable to metallic tubes. The boundary conditions are classified in terms of their symmetry properties and we demonstrate that the use of different boundary conditions will result in varying degrees of valley degeneracy breaking of the single particle energy spectrum

    Sea Contributions and Nucleon Structure

    Full text link
    We suggest a general formalism to treat a baryon as a composite system of three quarks and a `sea'. In this formalism, the sea is a cluster which can consists of gluons and quark-antiquark pairs. The hadron wave function with a sea component is given. The magnetic moments, related sum rules and axial weak coupling constants are obtained. The data seems to favor a vector sea rather than a scalar sea. The quark spin distributions in the nucleon are also discussed.Comment: 24 page

    Ellipsoidal, Cylindrical, Bipolar and Toroidal Wormholes in 5D Gravity

    Get PDF
    In this paper we construct and analyze new classes of wormhole and flux tube-like solutions for the 5D vacuum Einstein equations. These 5D solutions possess generic local anisotropy which gives rise to a gravitational running or scaling of the Kaluza-Klein ``electric'' and ``magnetic'' charges of these solutions. It is also shown that it is possible to self-consistently construct these anisotropic solutions with various rotational 3D hypersurface geometries (i.e. ellipsoidal, cylindrical, bipolar and toroidal). The local anisotropy of these solutions is handled using the technique of anholonomic frames with their associated nonlinear connection structures [vst]. Through the use of the anholonomic frames the metrics are diagonalized, in contrast to holonomic coordinate frames where the metrics would have off-diagonal components. In the local isotropic limit these solutions are shown to be equivalent to spherically symmetric 5D wormhole and flux tube solutions.Comment: 27 pages ReVTeX, added references and discussion. To be published in J. Math. Phy

    On the QED Effective Action in Time Dependent Electric Backgrounds

    Get PDF
    We apply the resolvent technique to the computation of the QED effective action in time dependent electric field backgrounds. The effective action has both real and imaginary parts, and the imaginary part is related to the pair production probability in such a background. The resolvent technique has been applied previously to spatially inhomogeneous magnetic backgrounds, for which the effective action is real. We explain how dispersion relations connect these two cases, the magnetic case which is essentially perturbative in nature, and the electric case where the imaginary part is nonperturbative. Finally, we use a uniform semiclassical approximation to find an expression for very general time dependence for the background field. This expression is remarkably similar in form to Schwinger's classic result for the constant electric background.Comment: 27 pages, no figures; reference adde

    Spontaneous Symmetry Breaking with Abnormal Number of Nambu-Goldstone Bosons and Kaon Condensate

    Get PDF
    We describe a class of relativistic models incorporating finite density of matter in which spontaneous breakdown of continuous symmetries leads to a lesser number of Nambu-Goldstone bosons than that required by the Goldstone theorem. This class, in particular, describes the dynamics of the kaon condensate in the color-flavor locked phase of high density QCD. We describe the spectrum of low energy excitations in this dynamics and show that, despite the presence of a condensate and gapless excitations, this system is not a superfluid.Comment: 5 pages, 1 figure, REVTeX. Minor revisions made and 2 new references added. To appear in Phys. Rev. Let
    corecore