1,751 research outputs found
Vetoing atmospheric neutrinos in a high energy neutrino telescope
We discuss the possibility to suppress downward atmospheric neutrinos in a
high energy neutrino telescope. This can be achieved by vetoing the muon which
is produced by the same parent meson decaying in the atmosphere. In principle,
atmospheric neutrinos with energies TeV and zenith angle up to 60
degree can be vetoed with an efficiency of > 99%. Practical realization will
depend on the depth of the neutrino telescope, on the muon veto efficiency and
on the ability to identify downward moving neutrinos with a good energy
estimation.Comment: 10 pages, 3 figures, accepted for publication in Physical Review
Recent s from IceCube
IceCube is a 1 km neutrino detector now being built at the South Pole.
Its 4800 optical modules will detect Cherenkov radiation from charged particles
produced in neutrino interactions. IceCube will search for neutrinos of
astrophysical origin, with energies from 100 GeV up to eV. It will be
able to separate , and . In addition to detecting
astrophysical neutrinos, IceCube will also search for neutrinos from WIMP
annihilation in the Sun and the Earth, look for low-energy (10 MeV) neutrinos
from supernovae, and search for a host of exotic signatures. With the
associated IceTop surface air shower array, it will study cosmic-ray air
showers.
IceCube construction is now 50% complete. After presenting preliminary
results from the partial detector, I will discuss IceCube's future plans.Comment: Invited talk presented at Neutrino 2008; 7 page
Jones-matrix Formalism as a Representation of the Lorentz Group
It is shown that the two-by-two Jones-matrix formalism for polarization
optics is a six-parameter two-by-two representation of the Lorentz group. The
attenuation and phase-shift filters are represented respectively by the
three-parameter rotation subgroup and the three-parameter Lorentz group for two
spatial and one time dimensions. It is noted that the Lorentz group has another
three-parameter subgroup which is like the two-dimensional Euclidean group.
Possible optical filters having this Euclidean symmetry are discussed in
detail. It is shown also that the Jones-matrix formalism can be extended to
some of the non-orthogonal polarization coordinate systems within the framework
of the Lorentz-group representation.Comment: RevTeX, 27 pages, no figures, to be published in J. Opt. Soc. Am.
Measurement of qutrits
We proposed the procedure of measuring the unknown state of the three-level
system - the qutrit, which was realized as the arbitrary polarization state of
the single-mode biphoton field. This procedure is accomplished for the set of
the pure states of qutrits; this set is defined by the properties of SU(2)
transformations, that are done by the polarization transformers.Comment: 9 pages, 9 figure
Distance-based degrees of polarization for a quantum field
It is well established that unpolarized light is invariant with respect to
any SU(2) polarization transformation. This requirement fully characterizes the
set of density matrices representing unpolarized states. We introduce the
degree of polarization of a quantum state as its distance to the set of
unpolarized states. We use two different candidates of distance, namely the
Hilbert-Schmidt and the Bures metric, showing that they induce fundamentally
different degrees of polarization. We apply these notions to relevant field
states and we demonstrate that they avoid some of the problems arising with the
classical definition.Comment: 8 pages, 1 eps figur
Maximally polarized states for quantum light fields
The degree of polarization of a quantum state can be defined as its
Hilbert-Schmidt distance to the set of unpolarized states. We demonstrate that
the states optimizing this degree for a fixed average number of photons
present a fairly symmetric, parabolic photon statistics, with a
variance scaling as . Although no standard optical process yields
such a statistics, we show that, to an excellent approximation, a highly
squeezed vacuum can be considered as maximally polarized.Comment: 4 pages, 3 eps-color figure
Quantum polarization tomography of bright squeezed light
We reconstruct the polarization sector of a bright polarization squeezed beam
starting from a complete set of Stokes measurements. Given the symmetry that
underlies the polarization structure of quantum fields, we use the unique SU(2)
Wigner distribution to represent states. In the limit of localized and bright
states, the Wigner function can be approximated by an inverse three-dimensional
Radon transform. We compare this direct reconstruction with the results of a
maximum likelihood estimation, finding an excellent agreement.Comment: 15 pages, 5 figures. Contribution to New Journal of Physics, Focus
Issue on Quantum Tomography. Comments welcom
- …
