1,751 research outputs found

    All Lepton Propagation Monte Carlo

    Get PDF

    IceCube: Initial Performance

    Get PDF

    Vetoing atmospheric neutrinos in a high energy neutrino telescope

    Full text link
    We discuss the possibility to suppress downward atmospheric neutrinos in a high energy neutrino telescope. This can be achieved by vetoing the muon which is produced by the same parent meson decaying in the atmosphere. In principle, atmospheric neutrinos with energies Eν>10E_\nu > 10 TeV and zenith angle up to 60 degree can be vetoed with an efficiency of > 99%. Practical realization will depend on the depth of the neutrino telescope, on the muon veto efficiency and on the ability to identify downward moving neutrinos with a good energy estimation.Comment: 10 pages, 3 figures, accepted for publication in Physical Review

    Recent ν\nus from IceCube

    Full text link
    IceCube is a 1 km3^3 neutrino detector now being built at the South Pole. Its 4800 optical modules will detect Cherenkov radiation from charged particles produced in neutrino interactions. IceCube will search for neutrinos of astrophysical origin, with energies from 100 GeV up to 101910^{19} eV. It will be able to separate νe\nu_e, νμ\nu_\mu and ντ\nu_\tau. In addition to detecting astrophysical neutrinos, IceCube will also search for neutrinos from WIMP annihilation in the Sun and the Earth, look for low-energy (10 MeV) neutrinos from supernovae, and search for a host of exotic signatures. With the associated IceTop surface air shower array, it will study cosmic-ray air showers. IceCube construction is now 50% complete. After presenting preliminary results from the partial detector, I will discuss IceCube's future plans.Comment: Invited talk presented at Neutrino 2008; 7 page

    Jones-matrix Formalism as a Representation of the Lorentz Group

    Get PDF
    It is shown that the two-by-two Jones-matrix formalism for polarization optics is a six-parameter two-by-two representation of the Lorentz group. The attenuation and phase-shift filters are represented respectively by the three-parameter rotation subgroup and the three-parameter Lorentz group for two spatial and one time dimensions. It is noted that the Lorentz group has another three-parameter subgroup which is like the two-dimensional Euclidean group. Possible optical filters having this Euclidean symmetry are discussed in detail. It is shown also that the Jones-matrix formalism can be extended to some of the non-orthogonal polarization coordinate systems within the framework of the Lorentz-group representation.Comment: RevTeX, 27 pages, no figures, to be published in J. Opt. Soc. Am.

    Measurement of qutrits

    Full text link
    We proposed the procedure of measuring the unknown state of the three-level system - the qutrit, which was realized as the arbitrary polarization state of the single-mode biphoton field. This procedure is accomplished for the set of the pure states of qutrits; this set is defined by the properties of SU(2) transformations, that are done by the polarization transformers.Comment: 9 pages, 9 figure

    Distance-based degrees of polarization for a quantum field

    Full text link
    It is well established that unpolarized light is invariant with respect to any SU(2) polarization transformation. This requirement fully characterizes the set of density matrices representing unpolarized states. We introduce the degree of polarization of a quantum state as its distance to the set of unpolarized states. We use two different candidates of distance, namely the Hilbert-Schmidt and the Bures metric, showing that they induce fundamentally different degrees of polarization. We apply these notions to relevant field states and we demonstrate that they avoid some of the problems arising with the classical definition.Comment: 8 pages, 1 eps figur

    Maximally polarized states for quantum light fields

    Get PDF
    The degree of polarization of a quantum state can be defined as its Hilbert-Schmidt distance to the set of unpolarized states. We demonstrate that the states optimizing this degree for a fixed average number of photons Nˉ\bar{N} present a fairly symmetric, parabolic photon statistics, with a variance scaling as Nˉ2\bar{N}^2. Although no standard optical process yields such a statistics, we show that, to an excellent approximation, a highly squeezed vacuum can be considered as maximally polarized.Comment: 4 pages, 3 eps-color figure

    Quantum polarization tomography of bright squeezed light

    Full text link
    We reconstruct the polarization sector of a bright polarization squeezed beam starting from a complete set of Stokes measurements. Given the symmetry that underlies the polarization structure of quantum fields, we use the unique SU(2) Wigner distribution to represent states. In the limit of localized and bright states, the Wigner function can be approximated by an inverse three-dimensional Radon transform. We compare this direct reconstruction with the results of a maximum likelihood estimation, finding an excellent agreement.Comment: 15 pages, 5 figures. Contribution to New Journal of Physics, Focus Issue on Quantum Tomography. Comments welcom
    corecore