8 research outputs found

    Evaluation Of Sensitivity To Chemotherapeutants In Successive Generations Of Lepeoptheirus Salmonis From A Resistant Population

    Get PDF
    There are currently reports of reduced sensitivity to certain lice treatments in different parts of Scotland and world-wide, and research is on-going into the extent and mechanisms of resistance to different treatments (Denholm et al., 2002; Sevatdal & Horsberg, 2003; Sevatdal et al., 2005). In particular, increasing evidence of resistance of Lepeophtheirus salmonis to the chemotherapeutant emamectin benzoate (Lees et al., 2008; Espedal et al., 2010) poses a serious problem to commercial farms because there are few licensed and effective treatments available

    Interactions between dietary docosahexaenoic acid and other long-chain polyunsaturated fatty acids on performance and fatty acid retention in post-smolt Atlantic salmon (Salmo salar)

    Get PDF
    A study with varying dietary inclusion levels (1, 5, 10, 15 and 20 g kg-1) of docosahexaenoic acid (DHA; 22:6n-3) was conducted with post-smolt (111 ± 2.6 g; mean ± S.) Atlantic salmon (Salmo salar) over a 9-week period. In addition to the series of DHA inclusion levels, the study included further diets that had DHA at 10 g kg-1 in combination with either eicosapentaenoic acid (EPA; 20:5n-3) or arachidonic acid (ARA; 20:4n-6), both also included at 10 g kg-1. An additional treatment with both EPA and DHA included at 5 g kg-1 (total of 10 g kg-1 long-chain polyunsaturated fatty acids, LC-PUFA) was also included. After a 9-week feeding period, fish were weighed, and carcass, blood and tissue samples collected. A minor improvement in growth was seen with increasing inclusion of DHA. However, the addition of EPA further improved growth response while addition of ARA had no effect on growth. As with most lipid studies, the fatty acid composition of the whole body lipids generally reflected that of the diets. However, there were notable exceptions to this, and these implicate some interactions among the different LC-PUFA in terms of the fatty acid bio- chemistry in this species. At very low inclusion levels, DHA retention was substantially higher (*250 %) than that at all other inclusion levels (31–58 %). The inclusion of EPA in the diet also had a positive effect on the retention efficiency of DHA. However, EPA retention was highly variable and at low DHA inclusion levels there was a net loss of EPA as this fatty acid was most likely elongated to produce DHA, consistent with increased DHA retention with addi- tional EPA in the diet. Retention of DPA (22:5n-3) was high at low levels of DHA, but diminished with increasing DHA inclusion, similar to that seen with DHA retention. The addition of EPA to the diet resulted in a substantial increase in the efficiency of DPA retention; the inclusion of ARA had the opposite effect. Retention of ARA was unaffected by DHA inclusion, but the addition of either EPA or ARA to the diet resulted in a substantial reduction in the efficiency of ARA retention. No effects of dietary treatment were noted on the retention of either linolenic (18:3n-3) or linoleic (18:2n-6) acids. When the total n-3 LC-PUFA content of the diet was the same but consisted of either DHA alone or as a combination of EPA plus DHA, the performance effects were similar

    Hypoxia does not change responses to dietary omega-3 long-chain polyunsaturated fatty acids, but rather reduces dietary energy demand by Atlantic salmon

    No full text
    Over 116 days, Atlantic salmon postsmolts of 183 ± 5 g were fed diets with high or low levels of lipid (230 or 180 g/kg) with high or low levels of omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA; 14 or 7 g/kg). Fish were reared under hypoxic and normoxic conditions (6.7 or 8.0 mg/L), as an environmental stressor. Higher levels of lipid and n-3 in the diet increased final weight and weight gain, although no lipid x n-3 interaction was found across both environments. Hypoxia led to reduced growth, which can be explained by reduced feed intake, with no effects on FCR being observed. High lipid diets improved protein and energy retention in the fish carcass as well as improved the digestibility of lipid and LC-PUFA, including EPA and DHA. High n-3 diets also improved retention and digestibility of LC-PUFA, and transcriptomic analysis showed that the liver had reduced levels of expression of fatty acid synthesis genes, for example fads2d5 and elovl2 in those treatments. A clear relationship between performance and energy intake, independent of n-3 LC-PUFA intake, shows that energy demand under hypoxia was an over-riding feature of the nutritional responses in this study

    Hypoxia does not change responses to dietary omega-3 long-chain polyunsaturated fatty acids, but rather reduces dietary energy demand by Atlantic salmon

    Get PDF
    Over 116 days, Atlantic salmon postsmolts of 183 ± 5 g were fed diets with high or low levels of lipid (230 or 180 g/kg) with high or low levels of omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA; 14 or 7 g/kg). Fish were reared under hypoxic and normoxic conditions (6.7 or 8.0 mg/L), as an environmental stressor. Higher levels of lipid and n-3 in the diet increased final weight and weight gain, although no lipid x n-3 interaction was found across both environments. Hypoxia led to reduced growth, which can be explained by reduced feed intake, with no effects on FCR being observed. High lipid diets improved protein and energy retention in the fish carcass as well as improved the digestibility of lipid and LC-PUFA, including EPA and DHA. High n-3 diets also improved retention and digestibility of LC-PUFA, and transcriptomic analysis showed that the liver had reduced levels of expression of fatty acid synthesis genes, for example fads2d5 and elovl2 in those treatments. A clear relationship between performance and energy intake, independent of n-3 LC-PUFA intake, shows that energy demand under hypoxia was an over-riding feature of the nutritional responses in this study.submittedVersio
    corecore