65 research outputs found
Soil organisms associated to the weed suppressant Crotalaria juncea (fabaceae) and its importance as a refuge for natural enemies
Soil organisms play an important role in organic crops of Crotalaria juncea (Fabaceae) and are associated with the natural conservation of the environment. The present study was aimed to investigate the population of soil organisms in the organic culture of C. juncea, as well as its importance as a refuge for natural enemies. Dalbulus maidis (Hemiptera: Cicadellidae), Diabrotica sp. (Coleoptera: Chrysomelidae), Doru luteipes (Dermaptera: Forficulidae), Gryllus assimilis (Orthoptera: Gryllidae), Lagria villosa (Coleoptera: Lagriidae), Melanotus sp. (Coleoptera: Elateridae), Meloidogyne incognita (Tylenchida: Heteroderidae), Nephila clavipes (Araneae: Nephilidae), Orius insidiosus (Hemiptera: Anthocoridae), Pheidole sp. (Hymenoptera: Myrmicidae), Phyllophaga sp. (Coleoptera: Scarabeidae), Procornitermes sp. (Isoptera: Termitidae), Solenopsis sp. (Hymenoptera: Formicidae), and Utetheisa ornatrix (Lepidoptera: Arctiidae) were identified in C. juncea. The organisms that were found during a 3-month period in 144 trenches in C. juncea were pest species (84.47%) and natural enemies (15.53%) as well. Natural enemies had an average of 11.89 individuals per 1.08 m³ of soil cultivated with C. juncea. The abundance of organisms in the pod stage (5.49%) of C. juncea was lower than that in the vegetative (83.50%) and flowering (11.01%) stages. Crotalaria juncea plants can be used as part of a crop system for Integrated Pest Management.Organismos de solo desempenham um importante papel em cultivos orgânicos de Crotalaria juncea (Fabaceae) e estão associados com a conservação natural do ambiente. O presente estudo teve como objetivo investigar a população de organismos de solo no cultivo orgânico de C. juncea, bem como sua importância como um refúgio para inimigos naturais. Dalbulus maidis (Hemiptera: Cicadellidae), Diabrotica sp. (Coleoptera: Chrysomelidae), Doru luteipes (Dermaptera: Forficulidae), Gryllus assimilis (Orthoptera: Gryllidae), Lagria villosa (Coleoptera: Lagriidae), Melanotus sp. (Coleoptera: Elateridae), Meloidogyne incognita (Tylenchida: Heteroderidae), Nephila clavipes (Araneae: Nephilidae), Orius insidiosus (Hemiptera: Anthocoridae), Pheidole sp. (Hymenoptera: Myrmicidae), Phyllophaga sp. (Coleoptera: Scarabeidae), Procornitermes sp. (Isoptera: Termitidae), Solenopsis sp. (Hymenoptera: Formicidae) e Utetheisa ornatrix (Lepidoptera: Arctiidae) foram identificados em C. juncea. Os organismos que foram encontrados durante um período de três meses em 144 trincheiras em C. juncea foram as espécies de pragas (84,47%) e inimigos naturais (15,53%). Inimigos naturais tiveram uma média de 11,89 indivíduos por 1,08 m³ de solo cultivado com C. juncea. A abundância de organismos na fase de vagem (5,49%) de C. juncea foi menor do que nas fases vegetativa (83,50%) e floração (11,01%). Plantas de C. juncea podem ser usadas como parte de um sistema de cultivo para o Manejo Integrado de Pragas
Factors influencing citrus fruit scarring caused by Pezothrips kellyanus
[EN] Kelly s citrus thrips (KCT) Pezothrips kellyanus
(Bagnall) (Thysanoptera: Thripidae) is a recently recorded
cosmopolitan citrus pest, causing fruit scarring that results in
downgrading of fruit. Due to the detrimental effects caused
on fruits by KCT, we wanted to study some of the factors
influencing fruit scarring. Specifically, the objectives were:
(1) to determine the fruit development stage when citrus
fruits are damaged by KCT and the population structure of
KCT during this period, (2) to study the influence of temperature
on intensity of damage, and finally, (3) to identify
alternative host plants. KCT populations on flowers and
fruitlets and alternate plant hosts were sampled in four citrus
orchards from 2008 to 2010. The percentage of damaged
fruits was also recorded. The exotic vine Araujia sericifera
(Apocynaceae) was recorded as a new host for KCT. Thrips
scarring started to increase at 350 650 degree-days (DD)
above 10.2 C, coinciding with a peak abundance of the
second instar larval stages over all 3 years of the study. The
maximum percentage of larval stages of KCT was observed
in the 3 years at about 500 DD, a period which corresponds to
the end of May or early June. Variation in the severity of fruit
scarring appeared to be related to air temperature. Temperature
likely affects the synchronisation between the peak in
abundance of KCT larvae, and the period when fruitlets are
susceptible to thrips damage. Temperature can also influence
the survival and development of KCT populations in citrus
and other host plants in the citrus agro-ecosystem.The authors thank Alejandro Tena for his valuable suggestions and two anonymous referees for their careful review and helpful comments. We also extend our thanks to the owners of the commercial orchards for giving us permission to use their citrus orchards. The first author was awarded an FPI fellowship from the Polytechnic University of Valencia to obtain her PhD degree.Navarro Campos, C.; Pekas, A.; Aguilar Martí, MA.; Garcia Marí, F. (2013). Factors influencing citrus fruit scarring caused by Pezothrips kellyanus. Journal of Pest Science. (86):459-467. doi:10.1007/s10340-013-0489-7S45946786Baker GJ (2006) Kelly citrus thrips management. Fact sheet. Government of South Australia, primary industries and resources SA. http://www.sardi.sa.gov.au/__data/assets/pdf_file/0010/44875/kctfact_sheet.pdf . Accessed 16 July 2012Baker GJ, Jackman DJ, Keller M, MacGregor A, Purvis S (2002) Development of an integrated pest management system for thrips in Citrus. HAL Final Report CT97007. http://www.sardi.sa.gov.au/pestsdiseases/horticulture/horticultural_pests/kelly_citrus_thrips/research_report_1997-2000 . Accessed 16 July 2012Bedford ECG (1998) Thrips, wind and other blemishes. Citrus pests in the Republic of South Africa. In: Bedford ECG, van den Berg MA, de Villiers EA (eds) ARC-Institute for tropical and subtropical crops, Nelspruit, South Africa, pp 170–183Blank RH, Gill GSC (1997) Thrips (Thysanoptera: Terebrantia) on flowers and fruit of citrus in New Zealand. N Z J Crop Hortic Sci 25:319–332Chellemi D, Funderburk F, Hall D (1994) Seasonal abundance of flower-inhabiting Frankliniella species (Thysanoptera: Thripidae) on wild plant species. Environ Entomol 23:337–342Conti F, Tuminelli R, Amico C, Fisicaro R, Frittitta C, Perrotta G, Marullo R (2001) Monitoring Pezothrips kellyanus on citrus in eastern Sicily, Thrips and tospoviruses. In: Proceedings of the 7th international symposium on Thysanoptera, Reggio Calabria, 1–8 July 2001, Italy, pp 207–210Costa L, Mateus C, zurStrassen R, Franco JC (2006) Thrips (Thysanoptera) associated to lemon orchards in the Oeste region of Portugal. IOBC/WPRS Bull 29:285–291European Plant Protection Organisation Reporting Service [EPPO] (2006) Pezothrips kellyanus. http://www.eppo.org/QUARANTINE/Pest_Risk_Analysis/PRAdocs_insects/06-12760%20DS%20PEZTKE.doc. Accessed 18 June 2012European Plant ProtectionOrganisation Reporting Service [EPPO] (2005) Scirtothrips aurantii, Scirtothrips citri, Scirtothrips dorsalis. EPPO Bull 35:353–356Franco JC, Garcia-Marí F, Ramos AP, Besri M (2006) Survey on the situation of citrus pest management in Mediterranean countries. IOBC/WPRS Bull 29:335–346Froud KJ, Stevens PS, Steven D (2001) Survey of alternative host plants for Kelly’s citrus thrips (Pezothrips kellyanus) in citrus growing regions. N Z Plant Prot 54:15–20Gomez-Clemente F (1952) Un tisanóptero causante de daños en las naranjas de algunas zonas de Levante. Boletín de Patología Vegetal y Entomología Agrícola 19:135–146Grout TG, Morse JG, O’Connell NV, Flaherty DL, Goodell PB, Freeman MW, Coviello RL (1986) Citrus thrips (Thysanoptera: Thripidae) phenology and sampling in the San Joaquin Valley. J Econ Entomol 79:1516–1523Horton J (1918) The citrus thrips. US Dep Agric Bull 616:1–42Kirk WDJ (1987) A key to the larvae of some common Australian flower thrips (Insecta: Thysanoptera), with a host-plant survey. Aust J Zool 35:173–185Lacasa A, Llorens JM, Sánchez JA (1996) Un Scirtothrips (Thysanoptera: Thripidae) causa daños en los cítricos en España. Bol San Veg Plagas 22:79–95Lewis HC (1935) Factors influencing citrus thrips damage. J Econ Entomol 28:1011–1015Lewis T (1997) Distribution, abundance and population dynamics. In: Lewis T (ed) Thrips as crop pests. CAB International, Wallingford, pp 217–258Lovatt C, Streeter S, Minter T, O’connell N, Flaherty D, Freeman M, Goodell P (1984) Phenology of flowering in Citrus sinensis (L.) Osbeck, cv. Washington navel orange. Proc Int Soc Citric 1:186–190Marullo R (1998) Pezothrips kellyanus, un nuovo tripide parassita delle colture meridionali. Informatore Fitopatologico 48:72–75Milne JR, Milne M, Walter GH (1997) A key to larval thrips (Thysanoptera) from Granite Belt stonefruit trees and a first description of Pseudanaphothrips achaetus (Bagnall) larvae. Aust J Entomol 36:319–326Mound LA, Jackman DJ (1998) Thrips in the economy and ecology of Australia, In: Zalucki MP, RAI Drew RAI, White GG (eds) Pest Management: future challenges, Proceedings of the sixth Australian applied entomological research conference, University of Queensland, St. Lucia, pp 472–478Mound LA, Marullo R (1996) The thrips of Central and South America (Insecta: Thysanoptera): an introduction. Mem Entomol Int 6:1–487Mound LA, Walker AK (1982) Terebrantia (Insecta: Thysanoptera). Fauna N Z 1:1–113Navarro-Campos C, Marzal C, Aguilar A, GarciaMarí F (2010) Presencia del microlepidóptero Anatrachyntisbadia en cítricos: descripción, comportamiento y daños al fruto. Levante Agrícola 402:270–276Navarro-Campos C, Aguilar A, Garcia-Marí F (2011) Population trend and fruit damage of Pezothrips kellyanus in citrus orchards in Valencia (Spain). IOBC/WPRS Bull 62: 285–292Navarro-Campos C, Aguilar A, Garcia-Marí F (2012) Aggregation pattern, sampling plan and intervention threshold for Pezothrips kellyanus in citrus groves. Entomol Exp Appl 142:130–139Northfield TD, Paini DR, Funderburk JE, Reitz SR (2008) Annual cycles of Frankliniella spp. (Thysanoptera: Thripidae) thrips abundance on North Florida uncultivated reproductive hosts: predicting possible sources of pest outbreaks. Ann Entomol Soc Am 101:769–778Orphanides G (1997) Thrips on citrus. Annual Review for 1997. Agricultural Research Institute, Nicosia, CyprusPerrotta G, Conti F (2008) A threshold hypothesis for an integrated control of thrips infestation on citrus in South-Eastern Sicily. IOBC/WPRS Bull 38:204–209Reitz S, Yu-lin G, Zhong-ren L (2011) Thrips: pests of concern to China and the United States. Agric Sci China 10:867–892Rhodes AA, Morse JG (1989) Scirtothrips citri sampling and damage prediction on California navel oranges. Agric Ecosyst Environ 26:117–129Schellhorn NA, Glatz RV, Wood GM (2010) The risk of exotic and native plants as hosts for four pest thrips (Thysanoptera: Thripinae). Bull Entomol Res 100:501–510Schweizer H, Morse JG (1997) Estimating the level of fruit scarring by citrus thrips from temperature conditions prior to the end of bloom. Crop Prot 16:743–752Smith D, Beattie GAC, Broadley R (eds) (1997) Citrus pests and their natural enemies: integrated pest management in Australia. Information series Q197030. Queensland Department of Primary Industries, BrisbaneStatgraphics (1994) Version 5.1 Plus. Statistical Graphics System by Statistical Graphics Corporation. Manugistics, RockvilleTanigoshi LK, Nishio JY, Moreno DS, Fargerlund J (1980) Effect of temperature on development and survival of Scirtothrips citri on citrus foliage. Ann Entomol Soc Am 73: 378–338Teksam I, Tunç I (2009) An analysis of Thysanoptera associated with citrus flowers in Antalya, Turkey: composition, distribution, abundance and pest status of species. Appl Entomol Zool 44:455–464Varikou K, Tsitsipis JA, Alexandrakis V, Mound LA (2002) Pezothrips kellyanus (Bagnall) (Thysanoptera: Thripidae), a new pest of citrus trees in Crete, In: Proceedings of the VII European congress of entomology, Thessaloniki, Greece, 7–13 Oct 2002, p 33Varikou K, Tsitsipis I, Alexandrakis V, Hoddle M (2009) Effect of temperature on the development and longevity of Pezothrips kellyanus (Thysanoptera: Thripidae). Ann Entomol Soc Am 102:835–841Varikou K, Birouraki A, Tsitsipis I, Sergentani CHR (2012) Effect of temperature on the fecundity of Pezothrips kellyanus (Thysanoptera: Thripidae). Ann Entomol Soc Am 105:60–65Vassiliou VA (2007) Chemical control of Pezothrips kellyanus (Thysanoptera: Thripidae) in citrus plantations in Cyprus. Crop Prot 26:1579–1584Vassiliou VA (2010) Ecology and behavior of Pezothrips kellyanus (Thysanoptera: Thripidae) on Citrus. J Econ Entomol 103:47–53Vierbergen G, Kucharczyk H, Kirk WDJ (2010) A key to the second instar larvae of the Thripidae of the Western Palearctic region. Tijdschr Entomol 153:99–160Webster KW, Cooper P, Mound LA (2006) Studies on Kelly’s citrus thrips, Pezothrips kellyanus (Bagnall) (Thysanoptera: Thripidae): sex attractants, host associations and country of origin. Aust J Entomol 45:67–74Wiesenborn W, Morse JG (1986) Feeding rate of Scirtothripscitri (Moulton) (Thysanoptera: Thripidae) as influenced by life stage and temperature. Environ Entomol 15:763–76
Specific Responses of Salmonella enterica to Tomato Varieties and Fruit Ripeness Identified by In Vivo Expression Technology
Recent outbreaks of vegetable-associated gastroenteritis suggest that enteric pathogens colonize, multiply and persist in plants for extended periods of time, eventually infecting people. Genetic and physiological pathways, by which enterics colonize plants, are still poorly understood.To better understand interactions between Salmonella enterica sv. Typhimurium and tomatoes, a gfp-tagged Salmonella promoter library was screened inside red ripe fruits. Fifty-one unique constructs that were potentially differentially regulated in tomato relative to in vitro growth were identified. The expression of a subset of these promoters was tested in planta using recombinase-based in vivo expression technology (RIVET) and fitness of the corresponding mutants was tested. Gene expression in Salmonella was affected by fruit maturity and tomato cultivar. A putative fadH promoter was upregulated most strongly in immature tomatoes. Expression of the fadH construct depended on the presence of linoleic acid, which is consistent with the reduced accumulation of this compound in mature tomato fruits. The cysB construct was activated in the fruit of cv. Hawaii 7997 (resistant to a race of Ralstonia solanacearum) more strongly than in the universally susceptible tomato cv. Bonny Best. Known Salmonella motility and animal virulence genes (hilA, flhDC, fliF and those encoded on the pSLT virulence plasmid) did not contribute significantly to fitness of the bacteria inside tomatoes, even though deletions of sirA and motA modestly increased fitness of Salmonella inside tomatoes.This study reveals the genetic basis of the interactions of Salmonella with plant hosts. Salmonella relies on a distinct set of metabolic and regulatory genes, which are differentially regulated in planta in response to host genotype and fruit maturity. This enteric pathogen colonizes tissues of tomatoes differently than plant pathogens, and relies little on its animal virulence genes for persistence within the fruit
Ocorrência de Frankliniella schultzei (trybom) (thysanoptera: thripidae) em plantas daninhas
Geostatistical analysis of the spatial distribution of mycotoxin concentration in bulk cereals
Deoxynivalenol (DON) and ochratoxin A (OTA) in agricultural commodities present
hazards to human and animal health. Bulk lots are routinely sampled for their
presence, but it is widely acknowledged that designing sampling plans is
particularly problematical because of the heterogeneous distribution of the
mycotoxins. Previous studies have not take samples from bulk. Sampling plans are
therefore designed on the assumption of random distributions. The objective of
this study was to analyse the spatial distribution of DON and OTA in bulk
commodities with geostatistics. This study was the first application of
geostatistical analysis to data on mycotoxins contamination of bulk commodities.
Data sets for DON and OTA in bulk storage were collected from the literature and
personal communications, of which only one contained data suitable for
geostatistical analysis. This data set represented a 26-tonne truck of wheat
with a total of 100 sampled points. The mean concentrations of DON and OTA were
1342 and 0.59 mu g kg(-1), respectively. The results showed that DON presented
spatial structure, whilst OTA was randomly distributed in space. This difference
between DON and OTA probably reflected the fact that DON is produced in the
field, whereas OTA is produced in storage. The presence of spatial structure for
DON implies that sampling plans need to consider the location of sample points
in addition to the number of points sampled in order to obtain reliable
estimates of quantities such as the mean contamination
First Report of<i>Fusarium oxysporum</i>f. sp.<i>lycopersici</i>Race 3 on Tomato in Northwest Florida and Georgia
Effects of Soil Solarization and Fumigation on Survival of Soilborne Pathogens of Tomato in Northern Florida
Influence of Site Factors on Dogwood Anthracnose in the Nantahala Mountain Range of Western North Carolina
- …
