10 research outputs found

    Synergistic malaria vaccine combinations identified by systematic antigen screening.

    Get PDF
    A highly effective vaccine would be a valuable weapon in the drive toward malaria elimination. No such vaccine currently exists, and only a handful of the hundreds of potential candidates in the parasite genome have been evaluated. In this study, we systematically evaluated 29 antigens likely to be involved in erythrocyte invasion, an essential developmental stage during which the malaria parasite is vulnerable to antibody-mediated inhibition. Testing antigens alone and in combination identified several strain-transcending targets that had synergistic combinatorial effects in vitro, while studies in an endemic population revealed that combinations of the same antigens were associated with protection from febrile malaria. Video microscopy established that the most effective combinations targeted multiple discrete stages of invasion, suggesting a mechanistic explanation for synergy. Overall, this study both identifies specific antigen combinations for high-priority clinical testing and establishes a generalizable approach that is more likely to produce effective vaccines

    Products with Health Benefits

    No full text
    none10C. Pruzzo; G. Gazzani; I. Ofek; P. Lingstrom; E. Zaura; P. Canepari; P. Cawkill; M. Wilson; J. Pratten; D. SprattPruzzo, Carla; G., Gazzani; I., Ofek; P., Lingstrom; E., Zaura; P., Canepari; P., Cawkill; M., Wilson; J., Pratten; D., Sprat

    Preclinical trial of a MAP4K4 inhibitor to reduce infarct size in the pig: Does cardioprotection in human stem cell-derived myocytes predict success in large mammals?

    Get PDF
    Reducing infarct size (IS) by interfering with mechanisms for cardiomyocyte death remains an elusive goal. DMX-5804, a selective inhibitor of the stress-activated kinase MAP4K4, suppresses cell death in mouse myocardial infarction (MI), human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), and 3D human engineered heart tissue, whose fidelity to human biology is hoped to strengthen the route to clinical success. Here, DMX-10001, a soluble, rapidly cleaved pro-drug of DMX-5804, was developed for i.v. testing in large-mammal MI. Following pharmacodynamic studies, a randomized, blinded efficacy study was performed in swine subjected to LAD balloon occlusion (60 min) and reperfusion (24 h). Thirty-six animals were enrolled; 12 were excluded by pre-defined criteria, death before infusion, or technical issues. DMX-10001 was begun 20 min before reperfusion (30 min, 60 mg/kg/h; 23.5 h, 17 mg/kg/h). At all times tested, beginning 30 min after the start of infusion, DMX-5804 concentrations exceeded > fivefold the levels that rescued hPSC-CMs and reduced IS in mice after oral dosing with DMX-5804 itself. No significant reduction occurred in IS or no-reflow corrected for the area at ischemic risk, even though DMX-10001 reduced IS, expressed in grams or % of LV mass, by 27%. In summary, a rapidly cleaved pro-drug of DMX-5804 failed to reduce IS in large-mammal MI, despite exceeding the concentrations for proven success in both mice and hPSC-CMs
    corecore