395 research outputs found
Vitamin A metabolism in cultured somatic cells from rat testis
Sertoli and peritubular myoid cells, the somatic cells of the seminiferous tubule, support growth and differentiation of developing germ cells. This action strictly depends on the availability of in situ synthesized retinoic acid and we have previously documented the ability of Sertoli, but not peritubular cell extracts, to support the oxidation of retinol to retinoic acid. Using primary cultures of somatic cells treated with a physiological concentration of free retinol, we show here that the same is essentially true also for whole cultured cells. Sertoli cells are capable of producing not only retinoic acid, but are also the major site of retinyl ester (mainly, retinyl palmitate) formation. Compared with retinyl palmitate accumulation, retinoic acid synthesis was both faster and positively influenced by prior exposure to retinol. This increase in retinoic acid synthesis was further augmented by treatment with the retinoic acid catabolic inhibitor liarozole, thus indicating that enhanced synthesis, rather than reduced catabolism, is responsible for such an effect. Myoid cells had a higher capacity to incorporate exogenously supplied retinol, yet retinoic acid synthesis, and even more so retinyl palmitate formation, were considerably lower than in Sertoli cells. Retinoic acid synthesis in myoid cells was not only depressed, but also very little influenced by prior retinol exposure and totally insensitive to liarozole. These data further support the view that myoid cells are involved in retinol uptake from the blood and its transfer to other cells, rather than in metabolic interconversion or long-term storage of vitamin A, two processes that mainly take place in Sertoli cells
Functional characterization and transcriptional repression by Lacticaseibacillus paracasei DinJ-YafQ
DinJ-YafQ is a bacterial type II TA system formed by the toxin RNase YafQ and the antitoxin protein DinJ. The activity of YafQ and DinJ has been rigorously studied in Escherichia coli, but little has been reported about orthologous systems identified in different microorganisms. In this work, we report an in vitro and in vivo functional characterization of YafQ and DinJ identified in two different strains of Lacticaseibacillus paracasei and isolated as recombinant proteins. While DinJ is identical in both strains, the two YafQ orthologs differ only for the D72G substitution in the catalytic site. Both YafQ orthologs digest ribosomal RNA, albeit with different catalytic efficiencies, and their RNase activity is neutralized by DinJ. We further show that DinJ alone or in complex with YafQ can bind cooperatively to a 28-nt inverted repeat overlapping the -35 element of the TA operon promoter. Atomic force microscopy imaging of DinJ-YafQ in complex with DNA harboring the cognate site reveals the formation of different oligomeric states that prevent the binding of RNA polymerase to the promoter. A single amino acid substitution (R13A) within the RHH DNA-binding motif of DinJ is sufficient to abolish DinJ and DinJ-YafQ DNA binding in vitro. In vivo experiments confirm the negative regulation of the TA promoter by DinJ and DinJ-YafQ and unveil an unexpected high expression-related toxicity of the gfp reporter gene. A model for the binding of two YafQ-(DinJ)2-YafQ tetramers to the promoter inverted repeat showing the absence of protein-protein steric clash is also presented. KEY POINTS: • The RNase activity of L. paracasei YafQ toxin is neutralized by DinJ antitoxin. • DinJ and DinJ-YafQ bind to an inverted repeat to repress their own promoter. • The R13A mutation of DinJ abolishes DNA binding of both DinJ and DinJ-YafQ
Nile River clayey materials in Sudan: chemical and isotope analysis as reference data for ancient pottery provenance studies
This research aims to define a chemical, mineralogical and strontium isotope database for clayey materials collected along the Nile River banks (White Nile, Blue Nile, Atbara and Main Nile Rivers) in Sudan, to be use for prehistoric and historic pottery provenance studies. The approach here adopted consists in using the clayey materials tout court, without any pre-treatment, such as the depuration from the sand- and silt-sized fractions, in order to maintain unaltered, the mineralogical and geochemical features of the natural resources possibly available also in ancient times for the pottery production, thus avoiding any possible preparation bias. Results indicate that sediments along different section of the Nile River display characteristic geochemical and strontium isotopic signature, representing an important discrimination tool applied to ancient ceramics provenance and human mobility studies
A respirable HPV-L2 dry-powder vaccine with GLA as amphiphilic lubricant and immune-adjuvant
Vaccines not requiring cold-chain storage/distribution and suitable for needle-free delivery are urgently needed. Pulmonary administration is one of the most promising non-parenteral routes for vaccine delivery. Through a multi-component excipient and spray-drying approach, we engineered highly respirable dry-powder vaccine particles containing a three-fold repeated peptide epitope derived from human papillomavirus (HPV16) minor capsid protein L2 displayed on Pyrococcus furious thioredoxin as antigen. A key feature of our engineering approach was the use of the amphiphilic endotoxin derivative glucopyranosyl lipid A (GLA) as both a coating agent enhancing particle de-aggregation and respirability as well as a built-in immune-adjuvant. Following an extensive characterization of the in vitro aerodynamic performance, lung deposition was verified in vivo by intratracheal administration in mice of a vaccine powder containing a fluorescently labeled derivative of the antigen. This was followed by a short-term immunization study that highlighted the ability of the GLA-adjuvanted vaccine powder to induce an anti-L2 systemic immune response comparable to (or even better than) that of the subcutaneously administered liquid-form vaccine. Despite the very short-term immunization conditions employed for this preliminary vaccination experiment, the intratracheally administered dry-powder, but not the subcutaneously injected liquid-state, vaccine induced consistent HPV neutralizing responses. Overall, the present data provide proof-of-concept validation of a new formulation design to produce a dry-powder vaccine that may be easily transferred to other antigens
Sustainability in peptide chemistry: current synthesis and purification technologies and future challenges.
Developing greener synthesis processes is an inescapable necessity to transform the industrial landscape, mainly in the pharmaceutical sector, into a long-term, sustainable reality. In this context, the renaissance of peptides as medical treatments, and the enforcement of more stringent sustainability requirements by regulatory agencies, pushed chemists toward the introduction of sustainable processes to prepare highly pure,
active pharmaceutical ingredients (APIs). Innovative upstream (synthesis) and downstream (purification) methodologies have been developed during the last 5 years with the introduction and optimization of several technologies in solid-phase peptide synthesis (SPPS), liquid-phase peptide synthesis (LPPS), chemoenzymatic peptide synthesis (CEPS), and chromatographic procedures. These innovations are also moving toward the introduction of continuous processes that represent one of the most important targets for iterative processes. This overview discusses the most recent efforts in making peptide chemistry greener. The extensive studies that were carried out on green solvents, reaction conditions, auxiliary reagents and purification technologies in the peptide segment can be useful to other fields of organic synthesi
Dimethyl carbonate as a green alternative to acetonitrile in reversed-phase liquid chromatography. Part I: Separation of small molecules
: Nowadays, environmental problems are drawing the attention of governments and international organisations, which are therefore encouraging the transition to green industrial processes and approaches. In this context, chemists can help indicate a suitable direction. Beside the efforts focused on greening synthetic approaches, currently also analytical techniques and separations are under observation, especially those employing large volumes of organic solvents, such as reversed-phase liquid chromatography (RPLC). Acetonitrile has always been considered the best performing organic modifier for RPLC applications, due to its chemical features (complete miscibility in water, UV transparency, low viscosity etc); nevertheless, it suffers of severe shortcomings, and most importantly, it does not fully comply with Environmental, Health and Safety (EHS) requirements. For these reasons, alternative greener solvents are being investigated, especially easily available alcohols. In this work, chromatographic performance of the most common solvents used in reversed-phase chromatography, i.e., acetonitrile, ethanol and isopropanol, have been compared to a scarcely used solvent, dimethyl carbonate (DMC). The analytes of interest were two small molecules, caffeine and paracetamol, whose kinetics and retention behaviour obtained with the four solvents have been compared, and all contributions to band broadening have been assessed. Results about kinetic performance are very promising, indicating that a small amount (7 % v/v) of DMC is able to produce the same efficiency as a 2.5-times larger ACN volume (18 % v/v), and larger efficiency than alcohols. This paper reports, for the first time, fundamental studies concerning the mass transfer phenomena when DMC is used as an organic solvent in RPLC, and, together with the companion paper, represents the results of a research whose final aim was to discover whether DMC is suitable for chromatographic applications both in linear and preparative conditions
Dimethyl carbonate as a green alternative to acetonitrile in reversed-phase liquid chromatography. Part II: purification of a therapeutic peptide
Preparative liquid chromatography in reversed phase conditions (RPLC) is the most common approach adopted
in the downstream processing for the purification of therapeutic peptides at industrial level. Due to the strict
requirements on the quality imposed by the Regulatory Agencies, routinary methods based on the use of aqueous
buffers and acetonitrile (ACN) as organic modifier are commonly used, where ACN is practically the only
available choice for the purification of peptide derivatives. However, ACN is known to suffers of many short comings, such as drastic shortage in the market, high costs and, most importantly, it shows unwanted toxicity for
human health and environment, which led it among the less environmentally friendly ones. For this reason, the
selection of a suitable alternative becomes crucial for the sustainable downstream processing of peptides and
biopharmaceuticals in general.
In this paper, a promising green solvent, namely dimethyl carbonate (DMC) has been used for the separation of
a peptide not only in linear conditions but also for its purification through non-linear overloaded chromatog raphy. The performance of the process has been compared to that achievable with the common method where
ACN is used as organic modifier and to that obtained with two additional solvents (namely ethanol and iso propanol), already used as greener alternatives to ACN.
This proof-of-concept study showed that, thanks to its higher elution strength, DMC can be considered a green
alternative to ACN, since it allows to reduce method duration while reaching good purities and recoveries.
Indeed, at a target purity fixed to 98.5 %, DMC led to the best productivity with respect to all the other solvents
tested, confirming its suitability as a sustainable alternative to ACN for the purification of complex biophar maceutical products
- …
