28 research outputs found

    Thermosensitive Nanocables Prepared by Surface-Initiated Atom Transfer Radical Polymerization

    Get PDF
    Thermosensitive nanocables consisting of Au nanowire cores and poly(N-isopropylacrylamide) sheaths (denoted as Au/PNIPAAm) were synthesized by surface-initiated atom transfer radical polymerization (SI-ATRP). The formation of PNIPAAm sheath was verified by Fourier transform infrared (FTIR) and hydrogen nuclear magnetic resonance (1H NMR) spectroscopy. Transmission electron microscope (TEM) results confirmed the core/shell structure of nanohybrids. The thickness and density of PNIPAAm sheaths can be adjusted by controlling the amount of cross-linker during the polymerization. Signature temperature response was observed from Au/cross-linked-PNIPAAm nanocables. Such smart nanocables show immense potentials as building blocks for novel thermosensitive nanodevices in future

    Nanobio Silver: Its Interactions with Peptides and Bacteria, and Its Uses in Medicine

    Full text link

    Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine

    Get PDF

    Phenylalanine assembly into toxic fibrils suggests amyloid etiology in phenylketonuria

    Full text link
    Phenylketonuria (PKU) is characterized by phenylalanine accumulation and progressive mental retardation caused by an unknown mechanism. We demonstrate that at pathological concentrations, phenylalanine self-assembles into fibrils with amyloid-like morphology and well-ordered electron diffraction. These assemblies are specifically recognized by antibodies, show cytotoxicity that can be neutralized by the antibodies and are present in the hippocampus of model mice and in parietal cortex brain tissue from individuals with PKU. This is, to our knowledge, the first demonstration that a single amino acid can form amyloid-like deposits, suggesting a new amyloidosis-like etiology for PKU

    Self-assembled nanotubes from single fluorescent amino acid

    No full text
    Self-assembly of biomolecules has gained increasing attention as it generates various supramolecular structural assemblies having potential applications principally in biomedical sciences. Here, we show that amino acid like tryptophan or tyrosine readily aggregates as nanotubes via a simple self-assembly process. These were characterized by FTIR, scanning electron microscopy, and by fluorescence microscopy. Nanotubes prepared from tryptophan are having similar to 200 nm inner diameter and those from tyrosine are having the same around similar to 50 nm diameter

    Directed Growth of Silk Nanofibrils on Graphene and Their Hybrid Nanocomposites

    No full text
    Combination of proteins with other nanomaterials offers a promising strategy to fabricate novel hybrids with original functions in biology, medicine, nanotechnology, and materials science. Under carefully selected experimental conditions, we show that graphene nanosheets are able to direct one-dimensional self-assembly of silk fibroin, forming an unprecedented type of nanohybrids. These silk/graphene hybrids combine physical properties of both constituents and form functional composites with well-ordered hierarchical structures. Due to the facile fabrication process and their tunable nanostructures, the resultant hybrids show promise in applications as diverse as tissue engineering, drug delivery, nanoelectronics, nanomedicine, biosensors, and functional composites
    corecore