63 research outputs found

    Modeling Individual-Level Infection Dynamics Using Social Network Information

    Full text link

    Spatial Distribution of Aphis glycines (Hemiptera: Aphididae): A Summary of the Suction Trap Network

    Get PDF
    The soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), is an economically important pest of soybean, Glycine max (L.) Merrill, in the United States. Phenological information ofA. glycines is limited; specifically, little is known about factors guiding migrating aphids and potential impacts of long distance flights on local population dynamics. Increasing our understanding of A. glycines population dynamics may improve predictions of A. glycines outbreaks and improve management efforts. In 2005 a suction trap network was established in seven Midwest states to monitor the occurrence of alates. By 2006, this network expanded to 10 states and consisted of 42 traps. The goal of the STN was to monitor movement of A. glycines from their overwintering hostRhamnus spp. to soybean in spring, movement among soybean fields during summer, and emigration from soybean to Rhamnus in fall. The objective of this study was to infer movement patterns ofA. glycines on a regional scale based on trap captures, and determine the suitability of certain statistical methods for future analyses. Overall, alates were not commonly collected in suction traps until June. The most alates were collected during a 3-wk period in the summer (late July to mid-August), followed by the fall, with a peak capture period during the last 2 wk of September. Alate captures were positively correlated with latitude, a pattern consistent with the distribution of Rhamnus in the United States, suggesting that more southern regions are infested by immigrants from the north

    Semi-supervised prediction of protein subcellular localization using abstraction augmented Markov models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Determination of protein subcellular localization plays an important role in understanding protein function. Knowledge of the subcellular localization is also essential for genome annotation and drug discovery. Supervised machine learning methods for predicting the localization of a protein in a cell rely on the availability of large amounts of labeled data. However, because of the high cost and effort involved in labeling the data, the amount of labeled data is quite small compared to the amount of unlabeled data. Hence, there is a growing interest in developing <it>semi-supervised methods</it> for predicting protein subcellular localization from large amounts of unlabeled data together with small amounts of labeled data.</p> <p>Results</p> <p>In this paper, we present an Abstraction Augmented Markov Model (AAMM) based approach to semi-supervised protein subcellular localization prediction problem. We investigate the effectiveness of AAMMs in exploiting <it>unlabeled</it> data. We compare semi-supervised AAMMs with: (i) Markov models (MMs) (which do not take advantage of unlabeled data); (ii) an expectation maximization (EM); and (iii) a co-training based approaches to semi-supervised training of MMs (that make use of unlabeled data).</p> <p>Conclusions</p> <p>The results of our experiments on three protein subcellular localization data sets show that semi-supervised AAMMs: (i) can effectively exploit unlabeled data; (ii) are more accurate than both the MMs and the EM based semi-supervised MMs; and (iii) are comparable in performance, and in some cases outperform, the co-training based semi-supervised MMs.</p

    Explaining Support Vector Machines: A Color Based Nomogram.

    Get PDF
    PROBLEM SETTING: Support vector machines (SVMs) are very popular tools for classification, regression and other problems. Due to the large choice of kernels they can be applied with, a large variety of data can be analysed using these tools. Machine learning thanks its popularity to the good performance of the resulting models. However, interpreting the models is far from obvious, especially when non-linear kernels are used. Hence, the methods are used as black boxes. As a consequence, the use of SVMs is less supported in areas where interpretability is important and where people are held responsible for the decisions made by models. OBJECTIVE: In this work, we investigate whether SVMs using linear, polynomial and RBF kernels can be explained such that interpretations for model-based decisions can be provided. We further indicate when SVMs can be explained and in which situations interpretation of SVMs is (hitherto) not possible. Here, explainability is defined as the ability to produce the final decision based on a sum of contributions which depend on one single or at most two input variables. RESULTS: Our experiments on simulated and real-life data show that explainability of an SVM depends on the chosen parameter values (degree of polynomial kernel, width of RBF kernel and regularization constant). When several combinations of parameter values yield the same cross-validation performance, combinations with a lower polynomial degree or a larger kernel width have a higher chance of being explainable. CONCLUSIONS: This work summarizes SVM classifiers obtained with linear, polynomial and RBF kernels in a single plot. Linear and polynomial kernels up to the second degree are represented exactly. For other kernels an indication of the reliability of the approximation is presented. The complete methodology is available as an R package and two apps and a movie are provided to illustrate the possibilities offered by the method

    Bioinformatics and molecular modeling in glycobiology

    Get PDF
    The field of glycobiology is concerned with the study of the structure, properties, and biological functions of the family of biomolecules called carbohydrates. Bioinformatics for glycobiology is a particularly challenging field, because carbohydrates exhibit a high structural diversity and their chains are often branched. Significant improvements in experimental analytical methods over recent years have led to a tremendous increase in the amount of carbohydrate structure data generated. Consequently, the availability of databases and tools to store, retrieve and analyze these data in an efficient way is of fundamental importance to progress in glycobiology. In this review, the various graphical representations and sequence formats of carbohydrates are introduced, and an overview of newly developed databases, the latest developments in sequence alignment and data mining, and tools to support experimental glycan analysis are presented. Finally, the field of structural glycoinformatics and molecular modeling of carbohydrates, glycoproteins, and protein–carbohydrate interaction are reviewed
    corecore