18,760 research outputs found
Replacement of PBNA in HB and HC polymers used in SRM propellant and liner
The antioxidant phenyl-beta-naphthylamine (PBNA) was used in both HB and HC polymers. The sole (domestic) supplier of PBNA has withdrawn this product from the market, primarily because of suspected health hazards. Commercially available substitute(s) were selected and qualified for use in the two polymers
Model for resonant photon creation in a cavity with time dependent conductivity
In an electromagnetic cavity, photons can be created from the vacuum state by
changing the cavity's properties with time. Using a simple model based on a
massless scalar field, we analyze resonant photon creation induced by the
time-dependent conductivity of a thin semiconductor film contained in the
cavity. This time dependence may be achieved by irradiating periodically the
film with short laser pulses. This setup offers several experimental advantages
over the case of moving mirrors.Comment: 9 pages, 1 figure. Minor changes. Version to appear in Phys. Rev.
Topological Excitations in Spinor Bose-Einstein Condensates
We investigate the properties of skyrmion in the ferromagnetic state of
spin-1 Bose-Einstein condensates by means of the mean-field theory and show
that the size of skyrmion is fixed to the order of the healing length. It is
shown that the interaction between two skyrmions with oppositely rotating spin
textures is attractive when their separation is large, following a unique
power-law behavior with a power of -7/2.Comment: 4 pages, 5 figure
Shot Noise in Anyonic Mach-Zehnder Interferometer
We show how shot noise in an electronic Mach-Zehnder interferometer in the
fractional quantum Hall regime probes the charge and statistics of quantum Hall
quasiparticles. The dependence of the noise on the magnetic flux through the
interferometer allows for a simple way to distinguish Abelian from non-Abelian
quasiparticle statistics. In the Abelian case, the Fano factor (in units of the
electron charge) is always lower than unity. In the non-Abelian case, the
maximal Fano factor as a function of the magnetic flux exceeds one.Comment: references adde
Repeat-Until-Success quantum computing using stationary and flying qubits
We introduce an architecture for robust and scalable quantum computation
using both stationary qubits (e.g. single photon sources made out of trapped
atoms, molecules, ions, quantum dots, or defect centers in solids) and flying
qubits (e.g. photons). Our scheme solves some of the most pressing problems in
existing non-hybrid proposals, which include the difficulty of scaling
conventional stationary qubit approaches, and the lack of practical means for
storing single photons in linear optics setups. We combine elements of two
previous proposals for distributed quantum computing, namely the efficient
photon-loss tolerant build up of cluster states by Barrett and Kok [Phys. Rev.
A 71, 060310(R) (2005)] with the idea of Repeat-Until-Success (RUS) quantum
computing by Lim et al. [Phys. Rev. Lett. 95, 030505 (2005)]. This idea can be
used to perform eventually deterministic two-qubit logic gates on spatially
separated stationary qubits via photon pair measurements. Under non-ideal
conditions, where photon loss is a possibility, the resulting gates can still
be used to build graph states for one-way quantum computing. In this paper, we
describe the RUS method, present possible experimental realizations, and
analyse the generation of graph states.Comment: 14 pages, 7 figures, minor changes, references and a discussion on
the effect of photon dark counts adde
Quantum lattice solitons in ultracold bosons near Feshbach resonance
Quantum lattice solitons in a system of two ultracold bosons near Feshbach
resonance are investigated. It is shown that their binding energy, effective
mass, and spatial width, can be manipulated varying the detuning from the
Feshbach resonance. In the case of attractive atomic interactions, the molecule
creation stabilizes the solitons. In the case of repulsive interactions, the
molecule creation leads to the possibility of existence of bright solitons in
some interval of detunings. Due to quantum fluctuations the soliton width is a
random quantity. Its standard deviation is larger than the mean value for such
a small number of particles
Rational engineering of nanoporous anodic alumina optical bandpass filters
First published online 07 Jul 2016Herein, we present a rationally designed advanced nanofabrication approach aiming at producing a new type of optical bandpass filters based on nanoporous anodic alumina photonic crystals. The photonic stop band of nanoporous anodic alumina (NAA) is engineered in depth by means of a pseudo-stepwise pulse anodisation (PSPA) approach consisting of pseudo-stepwise asymmetric current density pulses. This nanofabrication method makes it possible to tune the transmission bands of NAA at specific wavelengths and bandwidths, which can be broadly modified across the UV-visible-NIR spectrum through the anodisation period (i.e. time between consecutive pulses). First, we establish the effect of the anodisation period as a means of tuning the position and width of the transmission bands of NAA across the UV-visible-NIR spectrum. To this end, a set of nanoporous anodic alumina bandpass filters (NAA-BPFs) are produced with different anodisation periods, ranging from 500 to 1200 s, and their optical properties (i.e. characteristic transmission bands and interferometric colours) are systematically assessed. Then, we demonstrate that the rational combination of stacked NAA-BPFs consisting of layers of NAA produced with different PSPA periods can be readily used to create a set of unique and highly selective optical bandpass filters with characteristic transmission bands, the position, width and number of which can be precisely engineered by this rational anodisation approach. Finally, as a proof-of-concept, we demonstrate that the superposition of stacked NAA-BPFs produced with slight modifications of the anodisation period enables the fabrication of NAA-BPFs with unprecedented broad transmission bands across the UV-visible-NIR spectrum. The results obtained from our study constitute the first comprehensive rationale towards advanced NAA-BPFs with fully controllable photonic properties. These photonic crystal structures could become a promising alternative to traditional optical bandpass filters based on glass and plastic.Abel Santos, Taj Pereira, Cheryl Suwen Law and Dusan Losi
Assessment of binding affinity between drugs and human serum albumin using nanoporous anodic alumina photonic crystals
In this study, we report an innovative approach aiming to assess the binding affinity between drug molecules and human serum albumin by combining nanoporous anodic alumina rugate filters (NAA-RFs) modified with human serum albumin (HSA) and reflectometric interference spectroscopy (RIfS). NAA-RFs are photonic crystal structures produced by sinusoidal pulse anodization of aluminum that present two characteristic optical parameters, the characteristic reflection peak (λPeak), and the effective optical thickness of the film (OTeff), which can be readily used as sensing parameters. A design of experiments strategy and an ANOVA analysis are used to establish the effect of the anodization parameters (i.e., anodization period and anodization offset) on the sensitivity of HSA-modified NAA-RFs toward indomethacin, a model drug. To this end, two sensing parameters are used, that is, shifts in the characteristic reflection peak (ΔλPeak) and changes in the effective optical thickness of the film (ΔOTeff). Subsequently, optimized NAA-RFs are used as sensing platforms to determine the binding affinity between a set of drugs (i.e., indomethacin, coumarin, sulfadymethoxine, warfarin, and salicylic acid) and HSA molecules. Our results verify that the combination of HSA-modified NAA-RFs with RIfS can be used as a portable, low-cost, and simple system for establishing the binding affinity between drugs and plasma proteins, which is a critical factor to develop efficient medicines for treating a broad range of diseases and medical conditions.Mahdieh Nemati, Abel Santos, Cheryl Suwen Law, and Dusan Losi
Generating entangled photon pairs from a cavity-QED system
We propose a scheme for the controlled generation of Einstein-Podosky-Rosen
(EPR) entangled photon pairs from an atom coupled to a high Q optical cavity,
extending the prototype system as a source for deterministic single photons. A
thorough theoretical analysis confirms the promising operating conditions of
our scheme as afforded by currently available experimental setups. Our result
demonstrates the cavity QED system as an efficient and effective source for
entangled photon pairs, and shines new light on its important role in quantum
information science.Comment: It has recently come to our attention that the experiment by T. Wilk,
S. C. Webster, A. Kuhn and G. Rempe, published in Science 317, 488 (2007),
exactly realizes what we proposed in this article, which is published in Phy.
Rev. A 040302(R) (2005
- …
