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In an electromagnetic cavity, photons can be created from the vacuum state by changing the cavity’s
properties with time. Using a simple model based on a massless scalar field, we analyze resonant photon
creation induced by the time-dependent conductivity of a thin semiconductor film contained in the cavity. This
time dependence may be achieved by irradiating periodically the film with short laser pulses. This setup offers
several experimental advantages over the case of moving mirrors.
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I. INTRODUCTION

In quantum field theory, time-dependent boundary condi-
tions or time-dependent background fields may induce par-
ticle creation, even when the initial state of a quantum field
is the vacuum[1]. In the context of quantum electrodynam-
ics, uncharged mirrors in accelerated motion can in principle
create photons. This effect is referred to in the literature as
the dynamical Casimir effect, or motion-induced radiation
[2]. In particular, when the length of a high-Q electromag-
netic cavity oscillates with one of its resonant frequencies,
the number of photons inside the cavity accumulates slowly
and grows exponentially with time. Many authors have con-
sidered this problem using different approximations: from
toy models of scalar fields in 1+1 dimensions[3] to the more
realistic case of scalar and electromagnetic fields in three-
dimensional cavities[4,5]. Arbitrary periodic motion of the
boundary of an ideal cavity has been studied in[6]. The
relevance of finite-temperature effects and losses have also
been considered[7].

Unlike the static Casimir effect[8], that has been mea-
sured with increasing precision in recent years[9], an experi-
mental verification of the dynamical counterpart is still lack-
ing. The main reason is that typical resonance frequencies for
microwave cavities are of the order of GHz. It is of course
very difficult to make a mirror to oscillate at such frequen-
cies. Several alternative proposals have been investigated in
which the physical properties of the medium inside the cav-
ity change with time, but keeping fixed the boundary of the
cavity. Yablonovitch[10] pointed out that a nonlinear optical
medium whose index of refraction changes rapidly with time
accelerates the vacuum fluctuations, and may create photons.
Nonlinear optics may be used to produce effective fast-
moving mirrors.

Closer to our present work, Lozoviket al. [11] proposed
that one could change effectively the length of a cavity by
irradiating with ultrashort laser pulses a thin semiconductor
film deposited on one of the walls of the cavity. They evalu-
ated the number of photons created using an instantaneous
approximation in which the cavity suddenly changes its
length. Moreover, the conductivity of the thin film was as-
sumed to vanish before excitation and to be infinite after

irradiation. Cironeet al. [12] considered the photon genera-
tion produced by a time-dependent dielectric, using also an
instantaneous approximation.

From an experimental point of view, the idea of changing
the effective length of a cavity by irradiating a semiconduc-
tor is promising[13]. The theoretical aspects of the problem
are still not completely clear. The main goal of this paper is
to analyze the proposal of Ref.[11] with a more realistic
model that takes into account both the finite conductivity of
the semiconductor film and the characteristic times of exci-
tation and relaxation. We will also consider the possibility of
periodic oscillations of the conductivity of the semiconduc-
tor, as this will enhance particle production for certain reso-
nance frequencies.

We will therefore consider a rectangular cavity of fixed
size, with a thin semiconductor film inside it. We will model
the electromagnetic field by a massless scalar field and the
film conductivity with a sharp potential. This model has been
considered in previous works to describe partially transmit-
ting mirrors[14], and it will be enough for our purposes. The
modes for a massless scalar field inside such a cavity are
described in Sec. II. When the film is irradiated with a short
laser pulse its conductivity rapidly increases. After a relax-
ation time the conductivity drops down to the initial value.
The irradiation-excitation-relaxation cycle can be repeated
periodically. Although the conductivity may change several
orders of magnitude, when the initial conductivity is high
enough(as is the case for a semiconductor, see below), the
time-dependent frequency of the modes varies periodically
with time with a small amplitude. This will allow us to use
standard methods to compute the evolution of the modes
inside the cavity, and to show that for resonant external fre-
quencies the number of photons inside the cavity grows ex-
ponentially with time. This evolution is described in Sec. III.
In Sec. IV we estimate the number of photons for realistic
values of the different parameters, and we also discuss the
experimental advantages of the proposal over the moving
mirror case. Section V contains the conclusions of our work.

II. THE MODEL

We consider a three-dimensional model of a massless sca-
lar field within a rectangular cavity with perfect conducting
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walls with dimensionsLx, Ly, andLz. At the midpoint of the
cavity sx=Lx/2d a thin film of semiconducting material is
located. We model the conductivity properties of such mate-
rial by a potentialVstd: The ideal limit of perfect conductiv-
ity corresponds toV→`, andV→0 to a “transparent” ma-
terial. In our more realistic scenario this potential varies
between a minimum value,V0, and a maximumVmax. The
Lagrangian of the scalar field within the cavity is given by

L =
1

2
]mf]mf −

Vstd
2

dsx − Lx/2df2, s1d

wheredsxd is the one-dimensional Dirac delta function. The
use of an infinitely thin film is justified as long as the width
of the slab is much smaller than the wavelengths of the rel-
evant electromagnetic modes in the cavity. The correspond-
ing Lagrange equation reads

s¹2 − ]t
2df = Vstddsx − Lx/2df. s2d

For the sake of clarity we divide the cavity into two re-
gions: region Is0øxøLx/2d and region II(Lx/2øxøLx).
Perfect conductivity at the edges of the cavity imposes the
following boundary conditions:

fIsx = 0,td = fIIsx = Lx,td = 0,

fIsy = 0,td = fIIsy = Ly,td = 0,

fIsz= 0,td = fIIsz= Lz,td = 0. s3d

The presence of the semiconducting film introduces a dis-
continuity in the spatial derivative of the field(in the x̂ di-
rection), while the field itself remains continuous,

fIsx = Lx/2,td = fIIsx = Lx/2,td,

]xfIsx = Lx/2,td − ]xfIIsx = Lx/2,td = − Vstdfsx = Lx/2,td.

s4d

This can be seen by integrating out the field equation[Eq.
(2)] in the neighborhood of the film. As we will see, there are
two sets of solutions to Eqs.(3) and(4). One is characterized
by the functions

wmsxd =Î 2

Lx
sinS2pmxx

Lx
DÎ 2

Ly
sinSpmyy

Ly
D

3Î 2

Lz
sinSpmzz

Lz
D , s5d

wherem=smx,my,mzd are positive integers, and the other by

cmsx,td =Î 2

Lx
sin„kmx

stdx…Î 2

Ly
sinSpmyy

Ly
D

3Î 2

Lz
sinSpmzz

Lz
D . s6d

The functioncm depends ont throughkmx
std, which is the

mxth positive solution to the following transcendental equa-
tion:

2kmx
tan−1Skmx

Lx

2
D = − Vstd. s7d

To simplify the notation, in what follows we will writekm
instead ofkmx

.
Let us define

Fmsxd = Hwmsx,y,zd, 0 ø x ø Lx/2

wmsx − Lx,y,zd, Lx/2 ø x ø Lx,
s8d

Cmsx,td = Hcmsx,y,z,td, 0 ø x ø Lx/2

− cmsx − Lx,y,z,td, Lx/2 ø x ø Lx.
s9d

These functions satisfy the boundary conditions Eqs.(3) and
(4), and the orthogonality relationssFm ,Fnd=dm,n,
sFm ,Cnd=0, and sCm ,Cnd=f1−sin(kmstdLx) /kmstdLxgdm,n,
where we have used the usual inner product in the intervals
f0,Lig. It is also easy to show thatsFm ,]Cn /]knd
=sFm ,]2Cn /]kn

2d=0.
For tø0 the slab is not irradiated, consequentlyV is in-

dependent of time and has the valueV0. The modes of the
quantum scalar field that satisfy the Klein-Gordon equation
(2) are

vmsx,td =
e−iwmt

Î2wm

Fmsxd, s10d

umsx,td =
e−iv̄mt

Î2v̄m

Cmsx,0d, s11d

where

wm
2 = p2FS2mx

Lx
D2

+ Smy

Ly
D2

+ Smz

Lz
D2G ,

v̄m
2 = skm

0 d2 + Spmy

Ly
D2

+ Spmz

Lz
D2

,

andkm
0 is themth solution to Eq.(7) for V=V0. At t=0 the

potential starts to change in time and the sethkmj of the
eigenfrequencies of the cavity acquires a time dependence
through Eq.(7).

Using Eqs.(10) and(11), we expand the field operatorf
as

fsx,td = o
m

famvmsx,td + bmumsx,td + am
† vm

* sx,td

+ bm
† um

* sx,tdg , s12d

wheream andbm are annihilation operators. Notice that the
solutions in Eq.(10) correspond to modes with a node atx
=Lx/2 and therefore their dynamics is not affected by the
presence of the slab(if the initial particle number given by
kam

† aml is zero, it will remain zero for all times). These
modes are also decoupled from the modesum thanks to the
orthogonality conditions. Therefore, we will only consider
the evolution of the modes given in Eq.(11).

For tù0 we write the expansion of the field modeus as
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ussx,t . 0d = o
m

Pm
ssdstdCmsx,td. s13d

Replacing this expression intos¹2−]t
2dus=0, we find

P̈n
ssd + vn

2stdPn
ssd = − o

m
fs2Ṗm

ssdk̇m + Pm
ssdk̈mdgmn

sAd + Pm
ssdk̇m

2 gmn
sBdg,

s14d

where vm
2 std=km

2 std+smyp /Lyd2+smzp /Lzd2. Note that v̄m

=vms0d. The coefficientsgmn
sid read

gmn
sAd =

1

sCn,CndS ] Cm

] km
,CnD ,

gmn
sBd =

1

sCn,CndS ]2Cm

] km
2 ,CnD . s15d

Imposition of continuity ofus and u̇s at t=0 gives the fol-
lowing initial conditions:

Pm
ssds0d =

1

Î2v̄m

ds,m,

Ṗm
ssds0d = − iÎv̄m

2
ds,m, s16d

provided thatVstd and its time derivative are continuous at
t=0.

III. RESONANT PHOTON CREATION

We are interested in the number of photons created inside
the cavity. Hence we focus on resonance effects induced by
periodic oscillations in the conductivityVstd, which trans-
lates into effective periodic changes in the modes of the sca-
lar field. Therefore, we start by considering a time-dependent
conductivity given by

Vstd = V0 + sVmax− V0dfstd, s17d

where fstd is a periodic and non-negative function,fstd= fst
+Tdù0, that vanishes att=0 and attains its maximum at
fsted=1. In each period,fstd describes the excitation and
relaxation of the semiconductor produced by the laser pulse.
Typically, the characteristic time of excitationte is the small-
est time scale and satisfieste!T. We expandfstd in a Fou-
rier series

fstd = f0 + o
j=1

`

fl j coss jVtd + hj sins jVtdg

= f0 + o
j=1

`

f j coss jVt + cjd, s18d

whereV=2p /T. Sincete is the smallest time scale, on gen-
eral grounds we expect the firstT/te terms in the above
series to be relevant. We will present a particular example in
Sec. IV.

Under certain constraints, large changes inV induce only
small variations ink through the transcendental relation be-

tween k and V [see Eq.(7)]. In this case, a perturbative
treatment is valid and a linearization of such relation is ap-
propriate. Accordingly, we write

knstd = kn
0f1 + enfstdg, s19d

whereen is obtained after replacing Eqs.(17) and (19) into
Eq. (7) and expanding it to first order inen. The result is

en =
Vmax− V0

Lxskn
0d2 + V0S1 +

V0Lx

4
D . s20d

The restriction for the validity of the perturbative treatment
is V0Lx@Vmax/V0.1. These conditions are satisfied for re-
alistic values ofLx, V0, andVmax (see Sec. IV). It is worth
noticing that we are interested in low eigenfrequencies, for
which kstd,OsLx

−1d. Nonetheless the perturbative treatment
is also valid fork,OsVd.

In what follows, we will only consider expressions to first
order in en. To analyze the possibility of parametric reso-
nance, we write the spectrum given in Eq.(19) as

knstd = k̃n
0f1 + ensf − f0dg, s21d

where k̃n
0;kn

0s1+enf0d is a “renormalized” frequency. The
equation for the coefficientsPm

ssdstd [Eq. (14)] can now be
written to first order inen as

P̈n
ssd + ṽn

2Pn
ssd = − 2enskn

0d2sf − f0dPn
ssd − o

m
f2Ṗm

ssdemkm
0 ḟ

+ Pm
ssdemkm

0 f̈ggmn
sAd + Ose2d, s22d

where ṽn
2=sk̃n

0d2+spny/Lyd2+spnz/Lzd2. This equation de-
scribes a set of coupled harmonic oscillators with periodic
frequencies and couplings. It is of the same form as the equa-
tions that describe the modes of a scalar field in a three-
dimensional cavity with an oscillating boundary, and can be
solved using multiple scale analysis(MSA) [4]. A naive per-
turbative solution of previous equations in powers ofen
breaks down after a short amount of time(this happens for
particular values of the external frequency such that there is
a resonant coupling with eigenfrequencies of the cavity). In
order to find a solution valid for longer times, we introduce a
second time scaletn=ent and expandPn

ssd to first order as
Pn

ssdstd=Pn
ssds0dst ,tnd+enPn

ssds1dst ,tnd+Osen
2d.

The derivatives with respect to the time scalet read

Ṗn
ssd = ]tPn

ssds0d + enf]tn
Pn

ssds0d + ]tPn
ssds1dg, s23d

P̈n
ssd = ]t

2Pn
ssds0d + enf2]tnt

2 Pn
ssds0d + ]t

2Pn
ssds1dg. s24d

For the zeroth-order term, we get the equation of a harmonic
oscillator

Pn
ssds0d = An

ssdstndeiṽnt + Bn
ssdstnde−iṽnt. s25d

From Eq.(16) the initial conditions forAn
ssd andBn

ssd are
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An
ssdstn = 0d =

1

Î2v̄n
S1 −

v̄n

ṽn
Dds,n

2

<
1

Î2v̄n

skn
0d2

2v̄n
2 f0ends,n,

Bn
ssdstn = 0d =

1

Î2v̄n
S1 +

v̄n

ṽn
Dds,n

2

<
1

Î2v̄n
S1 −

skn
0d2

2v̄n
2 f0enDds,n. s26d

The first-order termPn
ssds1d satisfies

]t
2Pn

ssds1d + ṽn
2Pn

ssds1d = − 2]ttn

2 Pn
ssds0d − 2skn

0d2sf − f0dPn
ssds0d

− o
m

em

en
gmn

sAdf2]tPm
ssds0dkm

0 ḟ + Pm
ssds0dkm

0 f̈g,

s27d

wheregmn
sAd is calculated to zeroth order ine. The basic idea

of MSA is to impose the condition that any term on the
right-hand side of the previous equation with a time depen-
dency of the forme±iv̄nt must vanish. If not, these terms
would be in resonance with the left-hand side term and secu-
larities would appear. Applying this procedure, we obtain

1

2

dAn
ssd

dtn
= o

j

f jH−
skn

0d2

4iṽn
Bn

ssdeicjds2ṽn − V jd

− o
m

em

en

V j

4iṽn
gmn

sAd km
0 FS−

V j

2
− ṽmDAm

ssdeicjdsṽn

− ṽm − V jd+ S−
V j

2
+ ṽmDAm

ssde−icjdsṽn − ṽm + V jd

+ S−
V j

2
+ ṽmDBm

ssdeicjdsṽn + ṽm − V jdGJ s28d

and

1

2

dBn
ssd

dtn
= o

j

f jH skn
0d2

4iṽn
An

ssde−icjds2ṽn − V jd

+ o
m

em

en

V j

4iṽn
gmn

sAd km
0 FS−

V j

2
− ṽmDBm

ssde−icjdsṽn

− ṽm − V jd+ S−
V j

2
+ ṽmDBm

ssdeicjdsṽn − ṽm + V jd

+ S−
V j

2
+ ṽmDAm

ssde−icjdsṽn + ṽm − V jdGJ . s29d

The coupling coefficients as defined in Eq.(15) can be com-
puted using Eqs.(6), (7), and (19). However, we will not
need the explicit expression in what follows.

Since the functionfstd contains the frequenciesV j = jV,
we expect resonant behavior and/or mode coupling when one
of the following relations is satisfied:

V j = 2ṽn,

V j = uṽn ± ṽmu, s30d

for any pair of modesm andn. As the eigenfrequenciesṽn
are not equidistant, if some of the conditions in Eq.(30)
above are satisfied by a given sets j ,m ,nd, in general they
will not be satisfied for a different sets j8 ,m8 ,n8d. This can
be checked by inspection in each particular case. Assuming
that this is the case, we can restrict the analysis to a single
Fourier mode in the expansion(18), i.e., fstd= f0

+ f j coss jVt+cjd.
Let us consider the most important case of parametric

resonance, i.e., when the external frequency is tuned with
some of the eigenfrequencies of the cavity,V j =2ṽn. The
contributions proportional togm,n

sAd would be different from
zero if there exists an integerj8 such thatf2s j8 / jd±1gṽn
=ṽm. This may happen only for some particular values of
Lx,Ly,Lz. We will assume that the condition is not satisfied.
Therefore, as mentioned above, we can restrict the analysis
to the singlej Fourier mode. Moreover, the resonant moden
is not coupled and we are left with

dAn
ssd

dtn
= i

skn
0d2f je

icj

V j
Bn

ssd,
dBn

ssd

dtn
= − i

skn
0d2f je

−icj

V j
An

ssd.

s31d

The solution that satisfies the initial conditions Eqs.(26) is

An
ssdstnd =

ds,n

Î8v̄n
FS1 −

v̄n

ṽn
D coshS skn

0d2f j

V j
tnD

+ S1 +
v̄n

ṽn
Dieicj sinhS skn

0d2f j

V j
tnDG

<
ieicjds,n

Î2v̄n

sinhS skn
0d2f j

V j
tnD ,

Bn
ssdstnd =

ds,n

Î8v̄n

FS1 +
v̄n

ṽn
D coshS skn

0d2f j

V j
tnD

− S1 −
v̄n

ṽn
Die−icj sinhS skn

0d2f j

V j
tnDG

<
ds,n

Î2v̄n

coshS skn
0d2f j

V j
tnD . s32d

The corresponding number of created photons with fre-
quencyṽn=V j /2 is given by

kNnstdl = kbn
†bnl = o

s
2v̄nuAn

ssdstdu2 < sinh 2S skn
0d2f j

V j
entD ,

s33d

which leads to an exponential growth in the number of pho-
tons in the mode with frequencyṽn at a rate rcond
=2skn

0d2f jen/V j. It can be shown that no other off-resonant
frequenciesV j8ÞV j present in the Fourier spectrum offstd
contribute to the exponential growth of the number of pho-
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tons: in our model, the photon frequency spectrumFsvd de-
velops an exponentially growing component at a single fre-
quencyv=V j /2.

IV. NUMERICAL ESTIMATIONS

To determine the typical range of values of the conduc-
tivity V before and after the short laser pulse is applied to the
semiconductor, we use the relationV=4pnse

2/m, wherens is
the surface charge density of free carriers in the semicon-
ducting film, e is the electron charge, andm is the effective
mass of the free carriers. This relation was derived in[14],
where it was shown that our model Eq.(1) is equivalent to a
plane-polarized electromagnetic field propagating normally
to an infinitesimally thin jellium-type plasma sheet. When a
laser field suddenly impinges on the sheet, it produces time-
dependent changes in the surface charge densitynsstd that
induce a time variation in the conductivityVstd in our model.
When the semiconductor is illuminated in the GHz range it
becomes an excellent conductor(its conductivity being
within 2% error from that of copper[15]). Therefore, using
known values for the conductivities of good conductors, we
can fix Vmax=1016 m−1. When the laser field is not applied,
we can setV0=1010–1013 m−1, the range of values for dif-
ferent semiconductors. For a cavity of sizeLx.10−2 m, and
when the ratio between the maximum and minimum conduc-
tivities is in the range 103øVmax/V0ø106, we obtain from
Eq. (20) the following range of values ofe, 10−8øeø10−2.
Therefore, these small values givea posteriori justification
for the perturbative approach we have used. Note thate is
small even if the conductivity of the film changes six orders
of magnitude. For larger changes of the conductivity our
perturbative approach is not adequate.

As we mentioned in the previous section, we consider a
periodic functionfstd with periodT. To mimic the excitation
and relaxation processes, we choose the following linear
ramps:

fstd =5
t

te
for 0 , t ø te

sT − td
sT − ted

for te , t ø T,

s34d

wherete is the excitation time scale,te!T (see Fig. 1). This
simple choice will be enough to estimate the amplitude of
the resonance effect. Expanding thisfstd as in Eq.(18) we
obtainl j = f j coscj =Tfcoss2p jte/Td−1g / f2p2j2tes1−te/Tdg,

and hj =−f j sin cj =T sin s2p jte/Td / f2p2j2tes1−te/Tdg, so
that

f j =
1

p js1 − te/Td
Usinsp jte/Td

p jte/T
U . s35d

On the one hand, in the limitjpte/T!1 we get f j <1/p j .
This limit also corresponds to the instantaneous approxima-
tion te→0, in which the conductivity of the semiconductor
slab suddenly changes from low to high values. As men-
tioned in the Introduction, a similar instantaneous approxi-
mation was used in[11,12]; however, our approach is more
general, not only because we consider finite conductivities of
the slab, but also because we analyze periodic excitations via
the laser pulses. On the other hand, for large values ofj the
coefficients f j decay asT/tej

2p2. We have computed the
Fourier coefficientsf j for the particular functionfstd given in
Eq. (34). However, provided that 1! j !T/pte, it can be
shown that the resultf j ,1/p j is valid for any functionfstd
that grows on a time scalete and relaxes on a timeT.

The number of created photons grows exponentially at a
rate rcond=2skn

0d2f jen/V j. WhenLy,Lz@Lx we havekn
0< ṽn

=V j /2, so that the rate readsrcond=V j f jen/2. In the limit
V jte!1 this rate is independent ofj and is given byrcond
=en/T. In the limit V jte@1 it becomes rcond
=2sV jted−1en/T. In order to have resonant photon production
for a cavity of Lx=10−2 m, the resonant frequency 2p j /T
must be in the GHz range. With the present technology, it is
possible to have femtosecond laser pulses with a repetition
frequency up to 100 MHz, thus the resonance could be
achieved by rather low values ofj , in the range 1−10. The
rate at which GHz photons would be produced depends now
on whether the excitation time satisfieste!10−9 s or te
@10−9 s. Nowadays, it is possible to reach values forte as
small as 10−12 s [15], thus yielding an estimated rate of
rcond,108 en Hz. Notice that this estimation remains true
even for excitation times three orders of magnitude larger
than 10−12 s, after which there is a suppresion factor of order
1/V jte. Also notice thatrcond is acceptably large in all the
range wheree was assumed to vary, namely 10−8−10−2.

This estimation for the ratercondshould be contrasted with
that corresponding to the moving mirror case. In the latter
case, the typical rate isrmov<emov/Tmov, whereemov is the
relative amplitude of the oscillations of the mirror, andTmov
is the period of oscillation of the moving mirror, which must
be of order 10−9 s for a microwave cavity. If the oscillations
are produced by deformations of the surface, the value of
emov cannot exceed 3310−8 [2]. Then the accumulation of
photons is a very slow process, which requires extremely
high values for theQ factor of the cavity. The ratio between
the rate for photon creation for the time-dependent conduc-
tivity model and that of the moving mirror is

rcond

rmov
<

en

emov

Tmov

T
, s36d

which is of order 106Tmov/T for en<10−2 and emov<10−8.
Even assuming that it is possible to produce oscillations of
the mirror with a GHz frequency, and that the pulsing cycle
of the laser is of some MHz, this ratio is much larger than 1.

FIG. 1. Periodic excitation and relaxation of the semiconductor
slab via ultrashort laser pulses. The functionfstd is proportional to
the conductivity of the semiconductor and mimics its evolution in
time.
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Finally, in order to have resonance effects, the external
frequency should be tuned with the frequency of the resonant
mode with a high accuracy. In the moving mirror case, it has
been shown[4] that if the external frequency is slightly de-
tuned by an amountDVmov from the resonant frequency
Vmov=2p /Tmov, then the number of photons grows exponen-
tially as long asDVmov/Vmov,emov. A similar analysis
shows that, in the setup described in this paper, an analogous
restriction applies, withemov replaced byen. As we have
mentioned above,en can take values much larger thanemov.
Therefore, while the fine tuning is severe in the moving mir-
ror case, it is not so critical for the case of a time-dependent
conductivity.

The discussion above shows that the present setup is
much more promising for the experimental verification of the
dynamical Casimir effect than the moving mirror one: the
time-dependent conductivity may be achieved with the
present technology, the rate of photon creation is much
larger, and the fine tuning is not so severe.

V. CONCLUSIONS

In this paper, we have studied a simple scalar model to
mimic photon creation induced by time-dependent changes
in the conductivity of a thin semiconductor that is periodi-
cally excited by short laser pulses. When the conductivity of
the semiconductor, placed inside a cavity of linear size in the
cm range, changes up to six orders of magnitude during the
excitation process induced by the laser pulses, the dynamical
equations for the field modes have time-dependent coeffi-
cients that oscillate in time with small amplitudes. This al-
lowed us to solve the equations for the modes using multiple
scale analysis, and to show that for some resonant excitation
frequencies real photons are created inside the cavity, their

number growing exponentially in time. Due to the very short
excitation time of the semiconductorste/T!1d, it should be
possible to tune a cavity mode with the frequency of a high
j Fourier harmonic of the time-dependent conductivityVstd
of the semiconductor. Remarkably, as long asjpte/T!1, the
rate of photon creation is independent ofj . It is then possible
to produce resonant effects with ultrashort laser pulses whose
pulsing frequency is well below the GHz range. We have
also shown that this setup offers several advantages over the
case of motion-induced radiation arising from moving mir-
rors, such as much faster photoproduction rates and milder
fine-tuning problems.

Several issues remain to be investigated, such as how to
extend this research to the more realistic full electromagnetic
case, which involves Dirichlet and Neumann boundary con-
ditions. Based on previous results for the moving mirror case
[4], we expect an exponential growth of the number of cre-
ated photons with different rates for transverse electric and
transverse magnetic modes. Moreover, one should consider
the macroscopic properties of the semiconductor slab, such
as its frequency-dependent conductivity and permittivity
[16].

Another relevant aspect to investigate is how to disen-
tangle Casimir photons from those that may be radiated from
accelerated charges and thermal fluctuations of microcurrents
in the semiconductor film, as this is being irradiated by the
external laser pulse.
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