4,664 research outputs found

    Integration of Dirac-Jacobi structures

    Full text link
    We study precontact groupoids whose infinitesimal counterparts are Dirac-Jacobi structures. These geometric objects generalize contact groupoids. We also explain the relationship between precontact groupoids and homogeneous presymplectic groupoids. Finally, we present some examples of precontact groupoids.Comment: 10 pages. Brief changes in the introduction. References update

    A variational principle for volume-preserving dynamics

    Full text link
    We provide a variational description of any Liouville (i.e. volume preserving) autonomous vector fields on a smooth manifold. This is obtained via a ``maximal degree'' variational principle; critical sections for this are integral manifolds for the Liouville vector field. We work in coordinates and provide explicit formulae

    Poisson-Jacobi reduction of homogeneous tensors

    Full text link
    The notion of homogeneous tensors is discussed. We show that there is a one-to-one correspondence between multivector fields on a manifold MM, homogeneous with respect to a vector field Δ\Delta on MM, and first-order polydifferential operators on a closed submanifold NN of codimension 1 such that Δ\Delta is transversal to NN. This correspondence relates the Schouten-Nijenhuis bracket of multivector fields on MM to the Schouten-Jacobi bracket of first-order polydifferential operators on NN and generalizes the Poissonization of Jacobi manifolds. Actually, it can be viewed as a super-Poissonization. This procedure of passing from a homogeneous multivector field to a first-order polydifferential operator can be also understood as a sort of reduction; in the standard case -- a half of a Poisson reduction. A dual version of the above correspondence yields in particular the correspondence between Δ\Delta-homogeneous symplectic structures on MM and contact structures on NN.Comment: 19 pages, minor corrections, final version to appear in J. Phys. A: Math. Ge

    On quasi-Jacobi and Jacobi-quasi bialgebroids

    Get PDF
    We study quasi-Jacobi and Jacobi-quasi bialgebroids and their relationships with twisted Jacobi and quasi Jacobi manifolds. We show that we can construct quasi-Lie bialgebroids from quasi-Jacobi bialgebroids, and conversely, and also that the structures induced on their base manifolds are related via a quasi Poissonization

    Remarks on the notion of quantum integrability

    Full text link
    We discuss the notion of integrability in quantum mechanics. Starting from a review of some definitions commonly used in the literature, we propose a different set of criteria, leading to a classification of models in terms of different integrability classes. We end by highlighting some of the expected physical properties associated to models fulfilling the proposed criteria.Comment: 22 pages, no figures, Proceedings of Statphys 2

    A general framework for nonholonomic mechanics: Nonholonomic Systems on Lie affgebroids

    Get PDF
    This paper presents a geometric description of Lagrangian and Hamiltonian systems on Lie affgebroids subject to affine nonholonomic constraints. We define the notion of nonholonomically constrained system, and characterize regularity conditions that guarantee that the dynamics of the system can be obtained as a suitable projection of the unconstrained dynamics. It is shown that one can define an almost aff-Poisson bracket on the constraint AV-bundle, which plays a prominent role in the description of nonholonomic dynamics. Moreover, these developments give a general description of nonholonomic systems and the unified treatment permits to study nonholonomic systems after or before reduction in the same framework. Also, it is not necessary to distinguish between linear or affine constraints and the methods are valid for explicitly time-dependent systems.Comment: 50 page

    Jacobi structures revisited

    Full text link
    Jacobi algebroids, that is graded Lie brackets on the Grassmann algebra associated with a vector bundle which satisfy a property similar to that of the Jacobi brackets, are introduced. They turn out to be equivalent to generalized Lie algebroids in the sense of Iglesias and Marrero and can be viewed also as odd Jacobi brackets on the supermanifolds associated with the vector bundles. Jacobi bialgebroids are defined in the same manner. A lifting procedure of elements of this Grassmann algebra to multivector fields on the total space of the vector bundle which preserves the corresponding brackets is developed. This gives the possibility of associating canonically a Lie algebroid with any local Lie algebra in the sense of Kirillov.Comment: 20 page

    Interplane magnetic coupling effects in the multilattice compound Y_2Ba_4Cu_7O_{15}

    Full text link
    We investigate the interplane magnetic coupling of the multilattice compound Y_2Ba_4Cu_7O_{15} by means of a bilayer Hubbard model with inequivalent planes. We evaluate the spin response, effective interaction and the intra- and interplane spin-spin relaxation times within the fluctuation exchange approximation. We show that strong in-plane antiferromagnetic fluctuations are responsible for a magnetic coupling between the planes, which in turns leads to a tendency of the fluctuation in the two planes to equalize. This equalization effect grows whit increasing in-plane antiferromagnetic fluctuations, i. e., with decreasing temperature and decreasing doping, while it is completely absent when the in-layer correlation length becomes of the order of one lattice spacing. Our results provide a good qualitative description of NMR and NQR experiments in Y_2Ba_4Cu_7O_{15}.Comment: Final version, to appear. in Phys. Rev. B (Rapid Communications), sched. Jan. 9

    Emergence of good conduct, scaling and Zipf laws in human behavioral sequences in an online world

    Get PDF
    We study behavioral action sequences of players in a massive multiplayer online game. In their virtual life players use eight basic actions which allow them to interact with each other. These actions are communication, trade, establishing or breaking friendships and enmities, attack, and punishment. We measure the probabilities for these actions conditional on previous taken and received actions and find a dramatic increase of negative behavior immediately after receiving negative actions. Similarly, positive behavior is intensified by receiving positive actions. We observe a tendency towards anti-persistence in communication sequences. Classifying actions as positive (good) and negative (bad) allows us to define binary 'world lines' of lives of individuals. Positive and negative actions are persistent and occur in clusters, indicated by large scaling exponents alpha~0.87 of the mean square displacement of the world lines. For all eight action types we find strong signs for high levels of repetitiveness, especially for negative actions. We partition behavioral sequences into segments of length n (behavioral `words' and 'motifs') and study their statistical properties. We find two approximate power laws in the word ranking distribution, one with an exponent of kappa-1 for the ranks up to 100, and another with a lower exponent for higher ranks. The Shannon n-tuple redundancy yields large values and increases in terms of word length, further underscoring the non-trivial statistical properties of behavioral sequences. On the collective, societal level the timeseries of particular actions per day can be understood by a simple mean-reverting log-normal model.Comment: 6 pages, 5 figure
    corecore